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Abstract

Interest in using artificial neural networks (ANNs) for forecasting has led to a tremendous surge in research activities in
the past decade. While ANNs provide a great deal of promise, they also embody much uncertainty. Researchers to date are
still not certain about the effect of key factors on forecasting performance of ANNs. This paper presents a state-of-the-art
survey of ANN applications in forecasting. Our purpose is to provide (1) a synthesis of published research in this area, (2)
insights on ANN modeling issues, and (3) the future research directions.  1998 Elsevier Science B.V.
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1. Introduction forecasting task. First, as opposed to the traditional
model-based methods, ANNs are data-driven self-

Recent research activities in artificial neural net- adaptive methods in that there are few a priori
works (ANNs) have shown that ANNs have powerful assumptions about the models for problems under
pattern classification and pattern recognition capa- study. They learn from examples and capture subtle
bilities. Inspired by biological systems, particularly functional relationships among the data even if the
by research into the human brain, ANNs are able to underlying relationships are unknown or hard to
learn from and generalize from experience. Current- describe. Thus ANNs are well suited for problems
ly, ANNs are being used for a wide variety of tasks whose solutions require knowledge that is difficult to
in many different fields of business, industry and specify but for which there are enough data or
science (Widrow et al., 1994). observations. In this sense they can be treated as one

One major application area of ANNs is forecasting of the multivariate nonlinear nonparametric statistical
(Sharda, 1994). ANNs provide an attractive alter- methods (White, 1989; Ripley, 1993; Cheng and
native tool for both forecasting researchers and Titterington, 1994). This modeling approach with the
practitioners. Several distinguishing features of ability to learn from experience is very useful for
ANNs make them valuable and attractive for a many practical problems since it is often easier to

have data than to have good theoretical guesses
* about the underlying laws governing the systemsCorresponding author. Tel.: 11 330 6722772 ext. 326; fax:

11 330 6722448; e-mail: mhu@kentvm.kent.edu from which data are generated. The problem with the
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data-driven modeling approach is that the underlying regressive conditional heteroscedastic (ARCH)
rules are not always evident and observations are model (Engle, 1982) have been developed. (See De
often masked by noise. It nevertheless provides a Gooijer and Kumar (1992) for a review of this field.)
practical and, in some situations, the only feasible However, these nonlinear models are still limited in
way to solve real-world problems. that an explicit relationship for the data series at

Second, ANNs can generalize. After learning the hand has to be hypothesized with little knowledge of
data presented to them (a sample), ANNs can often the underlying law. In fact, the formulation of a
correctly infer the unseen part of a population even if nonlinear model to a particular data set is a very
the sample data contain noisy information. As fore- difficult task since there are too many possible
casting is performed via prediction of future behavior nonlinear patterns and a prespecified nonlinear model
(the unseen part) from examples of past behavior, it may not be general enough to capture all the
is an ideal application area for neural networks, at important features. Artificial neural networks, which
least in principle. are nonlinear data-driven approaches as opposed to

Third, ANNs are universal functional approx- the above model-based nonlinear methods, are ca-
imators. It has been shown that a network can pable of performing nonlinear modeling without a
approximate any continuous function to any desired priori knowledge about the relationships between
accuracy (Irie and Miyake, 1988; Hornik et al., 1989; input and output variables. Thus they are a more
Cybenko, 1989; Funahashi, 1989; Hornik, 1991, general and flexible modeling tool for forecasting.
1993). ANNs have more general and flexible func- The idea of using ANNs for forecasting is not
tional forms than the traditional statistical methods new. The first application dates back to 1964. Hu
can effectively deal with. Any forecasting model (1964), in his thesis, uses the Widrow’s adaptive
assumes that there exists an underlying (known or linear network to weather forecasting. Due to the
unknown) relationship between the inputs (the past lack of a training algorithm for general multi-layer
values of the time series and/or other relevant networks at the time, the research was quite limited.
variables) and the outputs (the future values). Fre- It is not until 1986 when the backpropagation
quently, traditional statistical forecasting models algorithm was introduced (Rumelhart et al., 1986b)
have limitations in estimating this underlying func- that there had been much development in the use of
tion due to the complexity of the real system. ANNs ANNs for forecasting. Werbos (1974), (1988) first
can be a good alternative method to identify this formulates the backpropagation and finds that ANNs
function. trained with backpropagation outperform the tradi-

Finally, ANNs are nonlinear. Forecasting has long tional statistical methods such as regression and
been the domain of linear statistics. The traditional Box-Jenkins approaches. Lapedes and Farber (1987)
approaches to time series prediction, such as the conduct a simulated study and conclude that ANNs
Box-Jenkins or ARIMA method (Box and Jenkins, can be used for modeling and forecasting nonlinear
1976; Pankratz, 1983), assume that the time series time series. Weigend et al. (1990), (1992); Cottrell et
under study are generated from linear processes. al. (1995) address the issue of network structure for
Linear models have advantages in that they can be forecasting real-world time series. Tang et al. (1991),
understood and analyzed in great detail, and they are Sharda and Patil (1992), and Tang and Fishwick
easy to explain and implement. However, they may (1993), among others, report results of several
be totally inappropriate if the underlying mechanism forecasting comparisons between Box-Jenkins and
is nonlinear. It is unreasonable to assume a priori ANN models. In a recent forecasting competition
that a particular realization of a given time series is organized by Weigend and Gershenfeld (1993)
generated by a linear process. In fact, real world through the Santa Fe Institute, winners of each set of
systems are often nonlinear (Granger and Terasvirta, data used ANN models (Gershenfeld and Weigend,
1993). During the last decade, several nonlinear time 1993).
series models such as the bilinear model (Granger Research efforts on ANNs for forecasting are
and Anderson, 1978), the threshold autoregressive considerable. The literature is vast and growing.
(TAR) model (Tong and Lim, 1980), and the auto- Marquez et al. (1992) and Hill et al. (1994) review
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the literature comparing ANNs with statistical research is also given by Wong et al. (1995). Kuan
models in time series forecasting and regression- and White (1994) review the ANN models used by
based forecasting. However, their review focuses on economists and econometricians and establish sever-
the relative performance of ANNs and includes only al theoretical frames for ANN learning. Cheng and
a few papers. In this paper, we attempt to provide a Titterington (1994) make a detailed analysis and
more comprehensive review of the current status of comparison of ANNs paradigms with traditional
research in this area. We will mainly focus on the statistical methods.
neural network modeling issues. This review aims at Artificial neural networks, originally developed to
serving two purposes. First, it provides a general mimic basic biological neural systems– the human
summary of the work in ANN forecasting done to brain particularly, are composed of a number of
date. Second, it provides guidelines for neural net- interconnected simple processing elements called
work modeling and fruitful areas for future research. neurons or nodes. Each node receives an input signal

The paper is organized as follows. In Section 2, which is the total ‘‘information’’ from other nodes or
we give a brief description of the general paradigms external stimuli, processes it locally through an
of the ANNs, especially those used for the forecast- activation or transfer function and produces a trans-
ing purpose. Section 3 describes a variety of the formed output signal to other nodes or external
fields in which ANNs have been applied as well as outputs. Although each individual neuron imple-
the methodology used. Section 4 discusses the key ments its function rather slowly and imperfectly,
modeling issues of ANNs in forecasting. The relative collectively a network can perform a surprising
performance of ANNs over traditional statistical number of tasks quite efficiently (Reilly and Cooper,
methods is reported in Section 5. Finally, conclu- 1990). This information processing characteristic
sions and directions of future research are discussed makes ANNs a powerful computational device and
in Section 6. able to learn from examples and then to generalize to

examples never before seen.
Many different ANN models have been proposed

2. An overview of ANNs since 1980s. Perhaps the most influential models are
the multi-layer perceptrons (MLP), Hopfield net-

In this section we give a brief presentation of works, and Kohonen’s self organizing networks.
artificial neural networks. We will focus on a par- Hopfield (1982) proposes a recurrent neural network
ticular structure of ANNs, multi-layer feedforward which works as an associative memory. An associa-
networks, which is the most popular and widely-used tive memory can recall an example from a partial or
network paradigm in many applications including distorted version. Hopfield networks are non-layered
forecasting. For a general introductory account of with complete interconnectivity between nodes. The
ANNs, readers are referred to Wasserman (1989); outputs of the network are not necessarily the
Hertz et al. (1991); Smith (1993). Rumelhart et al. functions of the inputs. Rather they are stable states
(1986a), (1986b), (1994), (1995); Lippmann (1987); of an iterative process. Kohonen’s feature maps
Hinton (1992); Hammerstrom (1993) illustrate the (Kohonen, 1982) are motivated by the self-organiz-
basic ideas in ANNs. Also, a couple of general ing behavior of the human brain.
review papers are now available. Hush and Horne In this section and the rest of the paper, our focus
(1993) summarize some recent theoretical develop- will be on the multi-layer perceptrons. The MLP
ments in ANNs since Lippmann (1987) tutorial networks are used in a variety of problems especially
article. Masson and Wang (1990) give a detailed in forecasting because of their inherent capability of
description of five different network models. Wilson arbitrary input–output mapping. Readers should be
and Sharda (1992) present a review of applications aware that other types of ANNs such as radial-basis
of ANNs in the business setting. Sharda (1994) functions networks (Park and Sandberg, 1991, 1993;
provides an application bibliography for researchers Chng et al., 1996), ridge polynomial networks (Shin
in Management Science /Operations Research. A and Ghosh, 1995), and wavelet networks (Zhang and
bibliography of neural network business applications Benveniste, 1992; Delyon et al., 1995) are also very
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useful in some applications due to their function incorporate both predictor variables and time-lagged
approximating ability. observations into one ANN model, which amounts to

An MLP is typically composed of several layers of the general transfer function model. For a discussion
nodes. The first or the lowest layer is an input layer on the relationship between ANNs and general
where external information is received. The last or ARMA models, see Suykens et al. (1996).
the highest layer is an output layer where the Before an ANN can be used to perform any
problem solution is obtained. The input layer and desired task, it must be trained to do so. Basically,
output layer are separated by one or more inter- training is the process of determining the arc weights
mediate layers called the hidden layers. The nodes in which are the key elements of an ANN. The knowl-
adjacent layers are usually fully connected by acyclic edge learned by a network is stored in the arcs and
arcs from a lower layer to a higher layer. Fig. 1 gives nodes in the form of arc weights and node biases. It
an example of a fully connected MLP with one is through the linking arcs that an ANN can carry out
hidden layer. complex nonlinear mappings from its input nodes to

For an explanatory or causal forecasting problem, its output nodes. An MLP training is a supervised
the inputs to an ANN are usually the independent or one in that the desired response of the network
predictor variables. The functional relationship esti- (target value) for each input pattern (example) is
mated by the ANN can be written as always available.

The training input data is in the form of vectors ofy 5 f(x ,x , ? ? ? ,x ),1 2 p input variables or training patterns. Corresponding to
where x ,x ,? ? ?,x are p independent variables and y each element in an input vector is an input node in1 2 p

is a dependent variable. In this sense, the neural the network input layer. Hence the number of input
network is functionally equivalent to a nonlinear nodes is equal to the dimension of input vectors. For
regression model. On the other hand, for an ex- a causal forecasting problem, the number of input
trapolative or time series forecasting problem, the nodes is well defined and it is the number of
inputs are typically the past observations of the data independent variables associated with the problem.
series and the output is the future value. The ANN For a time series forecasting problem, however, the
performs the following function mapping appropriate number of input nodes is not easy to

determine. Whatever the dimension, the input vectory 5 f( y ,y , ? ? ? ,y ),t11 t t21 t2p for a time series forecasting problem will be almost
where y is the observation at time t. Thus the ANN always composed of a moving window of fixedt

is equivalent to the nonlinear autoregressive model length along the series. The total available data is
for time series forecasting problems. It is also easy to usually divided into a training set (in-sample data)

and a test set (out-of-sample or hold-out sample).
The training set is used for estimating the arc
weights while the test set is used for measuring the
generalization ability of the network.

The training process is usually as follows. First,
examples of the training set are entered into the input
nodes. The activation values of the input nodes are
weighted and accumulated at each node in the first
hidden layer. The total is then transformed by an
activation function into the node’s activation value.
It in turn becomes an input into the nodes in the next
layer, until eventually the output activation values
are found. The training algorithm is used to find the
weights that minimize some overall error measure
such as the sum of squared errors (SSE) or mean

Fig. 1. A typical feedforward neural network (MLP). squared errors (MSE). Hence the network training is
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actually an unconstrained nonlinear minimization forecasting nonlinear time series with very high
problem. accuracy.

For a time series forecasting problem, a training Following Lapedes and Farber, a number of
pattern consists of a fixed number of lagged observa- papers were devoted to using ANNs to analyze and
tions of the series. Suppose we have N observations predict deterministic chaotic time series with and/or
y ,y ,? ? ? y in the training set and we need 1-step- without noise. Chaotic time series occur mostly in1 2 N

ahead forecasting, then using an ANN with n input engineering and physical science since most physical
nodes, we have N2n training patterns. The first phenomena are generated by nonlinear chaotic sys-
training pattern will be composed of y ,y ,? ? ?,y as tems. As a result, many authors in the chaotic time1 2 n

inputs and y as the target output. The second series modeling and forecasting are from the field ofn11

training pattern will contain y ,y ,? ? ?,y as inputs physics. Lowe and Webb (1990) discuss the relation-2 3 n11

and y as the desired output. Finally, the last ship between dynamic systems and functional inter-n12

training pattern will be y , y ,? ? ? y for polation with ANNs. Deppisch et al. (1991) proposeN2n N2n11 N21

inputs and y for the target. Typically, an SSE based a hierarchically trained ANN model in which aN

objective function or cost function to be minimized dramatic improvement in accuracy is achieved for
during the training process is prediction of two chaotic systems. Other papers

using chaotic time series for illustration include
N1 Jones et al. (1990); Chan and Prager (1994); Rosen2]E 5 O ( y 2 a ) ,i i (1993); Ginzburg and Horn (1991), (1992); Poli and2 i5n11

Jones (1994).
The sunspot series has long served as a benchmarkwhere a is the actual output of the network and 1/2i

and has been well studied in statistical literature.is included to simplify the expression of derivatives
Since the data are believed to be nonlinear, non-computed in the training algorithm.
stationary and non-Gaussian, they are often used as a
yardstick to evaluate and compare new forecasting
methods. Some authors focus on how to use ANNs

3. Applications of ANNs as forecasting tools to improve accuracy in predicting sunspot activities
over traditional methods (Li et al., 1990; De Groot

Forecasting problems arise in so many different and Wurtz, 1991), while others use the data to
disciplines and the literature on forecasting using illustrate a method (Weigend et al., 1990, 1991,
ANNs is scattered in so many diverse fields that it is 1992; Ginzburg and Horn, 1992, 1994; Cottrell et al.,
hard for a researcher to be aware of all the work 1995).
done to date in the area. In this section, we give an There is an extensive literature in financial appli-
overview of research activities in forecasting with cations of ANNs (Trippi and Turban, 1993; Azoff,
ANNs. First we will survey the areas in which ANNs 1994; Refenes, 1995; Gately, 1996). ANNs have
find applications. Then we will discuss the research been used for forecasting bankruptcy and business
methodology used in the literature. failure (Odom and Sharda, 1990; Coleman et al.,

1991; Salchenkerger et al., 1992; Tam and Kiang,
3.1. Application areas 1992; Fletcher and Goss, 1993; Wilson and Sharda,

1994), foreign exchange rate (Weigend et al., 1992;
One of the first successful applications of ANNs in Refenes, 1993; Borisov and Pavlov, 1995; Kuan and

forecasting is reported by Lapedes and Farber Liu, 1995; Wu, 1995; Hann and Steurer, 1996), stock
(1987), (1988). Using two deterministic chaotic time prices (White, 1988; Kimoto et al., 1990;
series generated by the logistic map and the Glass- Schoneburg, 1990; Bergerson and Wunsch, 1991;
Mackey equation, they designed the feedforward Yoon and Swales, 1991; Grudnitski and Osburn,
neural networks that can accurately mimic and 1993), and others (Dutta and Shekhar, 1988; Sen et
predict such dynamic nonlinear systems. Their re- al., 1992; Wong et al., 1992; Kryzanowski et al.,
sults show that ANNs can be used for modeling and 1993; Chen, 1994; Refenes et al., 1994; Kaastra and
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Boyd, 1995; Wong and Long, 1995; Chiang et al., rainfall (Chang et al., 1991), river flow (Karunanithi
1996; Kohzadi et al., 1996). et al., 1994), student grade point averages (Gorr et

Another major application of neural network al., 1994), tool life (Ezugwu et al., 1995), total
forecasting is in electric load consumption study. industrial production (Aiken et al., 1995), trajectory
Load forecasting is an area which requires high (Payeur et al., 1995), transportation (Duliba, 1991),
accuracy since the supply of electricity is highly water demand (Lubero, 1991), and wind pressure
dependent on load demand forecasting. Park and profile (Turkkan and Srivastava, 1995).
Sandberg (1991) report that simple ANNs with
inputs of temperature information alone perform 3.2. Methodology
much better than the currently used regression-based
technique in forecasting hourly, peak and total load There are many different ways to construct and
consumption. Bacha and Meyer (1992) discuss why implement neural networks for forecasting. Most
ANNs are suitable for load forecasting and propose a studies use the straightforward MLP networks
system of cascaded subnetworks. Srinivasan et al. (Kang, 1991; Sharda and Patil, 1992; Tang and
(1994) use a four-layer MLP to predict the hourly Fishwick, 1993) while others employ some variants
load of a power system. Other studies in this area of MLP. Although our focus is on feedforward
include Bakirtzis et al. (1995); Brace et al. (1991); ANNs, it should be pointed out that recurrent
Chen et al. (1991); Dash et al. (1995); El-Sharkawi networks also play an important role in forecasting.
et al. (1991); Ho et al. (1992); Hsu and Yang See Connor et al. (1994) for an illustration of the
(1991a), (1991b); Hwang and Moon (1991); Kiartzis relationship between recurrent networks and general
et al. (1995); Lee et al. (1991); Lee and Park (1992); ARMA models. The use of the recurrent networks
Muller and Mangeas (1993); Pack et al. (1991a,b); for forecasting can be found in Gent and Sheppard
Peng et al. (1992); Pelikan et al. (1992); Ricardo et (1992); Connor et al. (1994); Kuan and Liu (1995).
al. (1995). Narendra and Parthasarathy (1990) and Levin and

Many researchers use data from the well-known Narendra (1993) discuss the issue of identification
M-competition (Makridakis et al., 1982) for compar- and control of nonlinear dynamical systems using
ing the performance of ANN models with the feedforward and recurrent neural networks. The
traditional statistical models. The M-competition theoretical and simulation results from these studies
data are mostly from business, economics and fi- provide the necessary background for accurate analy-
nance. Several important works include Kang sis and forecasting of nonlinear dynamic systems.
(1991); Sharda and Patil (1992); Tang et al. (1991); Lapedes and Farber (1987) were the first to use
Foster et al. (1992); Tang and Fishwick (1993); Hill the multi-layer feedforward networks for forecasting
et al. (1994), (1996). In the Santa Fe forecasting purposes. Jones et al. (1990) extend Lapedes and
competition (Weigend and Gershenfeld, 1993), six Farber (1987, (1988) by using a more efficient one
nonlinear time series from very different disciplines dimensional Newton’s method to train the network
such as physics, physiology, astrophysics, finance, instead of using the standard backpropogation. Based
and even music are used. All the data sets are very on the above work, Poli and Jones (1994) build a
large compared to the M-competition where all time stochastic MLP model with random connections
series are quite short. between units and noisy response functions.

Many other forecasting problems have been solved The issue of finding a parsimonious model for a
by ANNs. A short list includes airborne pollen real problem is critical for all statistical methods and
(Arizmendi et al., 1993), commodity prices (Kohzadi is particularly important for neural networks because
et al., 1996), environmental temperature (Balestrino the problem of overfitting is more likely to occur
et al., 1994), helicopter component loads (Haas et with ANNs. The parsimonious models not only have
al., 1995), international airline passenger traffic the recognition ability, but also have the more
(Nam and Schaefer (1995), macroeconomic indices important generalization capability. Baum and Haus-
(Maasoumi et al., 1994), ozone level (Ruiz-Suarez et sler (1989) discuss the general relationship between
al., 1995), personnel inventory (Huntley, 1991), the generalizability of a network and the size of the



G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62 41

training sample. Amirikian and Nishimura (1994) time series forecasting accuracy. While the first
find that the appropriate network size depends on the network is a regular one for modeling the original
specific tasks of learning. time series, the second one is used to model the

Several researchers address the issue of finding residuals from the first network and to predict the
networks with appropriate size for predicting real- errors of the first. The combined result for the
world time series. Based on the information theoretic sunspots data is improved considerably over the one
idea of minimum description length, Weigend et al. network method. Wedding and Cios (1996) describe
(1990), (1991), (1992) propose a weight pruning a method of combining radial-basis function net-
method called weight-elimination through intro- works and the Box-Jenkins models to improve the
ducing a term to the backpropagation cost function reliability of time series forecasting. Donaldson and
that penalizes network complexity. The weight elimi- Kamstra (1996) propose a forecasting combining
nation method dynamically eliminates weights dur- method using ANNs to overcome the shortcomings
ing training to help overcome the network overfitting of the linear forecasting combination methods.
problem (learning the noise as well as rules in the Zhang and Hutchinson (1993) and Zhang (1994)
data, see Smith, 1993). Cottrell et al. (1995) also describe an ANN method based on a general state
discuss the general ANN modeling issue. They space model. Focusing on multiple step predictions,
suggest a statistical stepwise method for eliminating they doubt that an individual network would be
insignificant weights based on the asymptotic prop- powerful enough to capture all of the information in
erties of the weight estimates to help establish the available data and propose a cascaded approach
appropriate sized ANNs for forecasting. De Groot which uses several cascaded neural networks to
and Wurtz (1991) present a parsimonious feedfor- predict multiple future values. The method is basical-
ward network approach based on a normalized ly iterative and one network is needed for prediction
Akaike information criterion (AIC) (Akaike, 1974) of each additional step. The first network is con-
to model and analyze the time series data. structed solely using past observations as inputs to

Lachtermacher and Fuller (1995) employ a hybrid produce an initial one-step-ahead forecast; then a
approach combining Box-Jenkins and ANNs for the second network is constructed using all past observa-
purpose of minimizing the network size and hence tions and previous predictions as inputs to generate
the data requirement for training. In the exploratory both one-step and two-step-ahead forecasts. This
phase, the Box-Jenkins method is used to find the process is repeated until finally the last network used
appropriate ARIMA model. In the modeling phase, all past observations as well as all previous forecast
an ANN is built with some heuristics and the values to yield the desired multi-step-ahead fore-
information on the lag components of the time series casts.
obtained in the first step. Kuan and Liu (1995) Chakraborty et al. (1992) consider using ANN
suggest a two-step procedure to construct the feed- approach to multivariate time series forecasting.
forward and recurrent ANNs for time series forecast- Utilizing the contemporaneous structure of the tri-
ing. In the first step the predictive stochastic com- variate data series, they adopt a combined approach
plexity criterion (Rissanen, 1987) is used to select of neural network which produces much better
the appropriate network structures and then the results than a separate network for each individual
nonlinear least square method is used to estimate the time series. Vishwakarma (1994) uses a two-layer
parameters of the networks. Barker (1990) and ANN to predict multiple economic time series based
Bergerson and Wunsch (1991) develop hybrid sys- on the state space model of Kalman filtering theory.
tems combining ANNs with an expert system. Artificial neural networks have also been investi-

Pelikan et al. (1992) present a method of combin- gated as an auxiliary tool for forecasting method
ing several neural networks with maximal decorre- selection and ARIMA model identification. Chu and
lated residuals. The results from combined networks Widjaja (1994) suggest a system of two ANNs for
show much improvement over a single neural net- forecasting method selection. The first network is
work and the linear regression. Ginzburg and Horn used for recognition of demand pattern in the data.
(1994) also use two combined ANNs to improve The second one is then used for the selection of a
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forecasting method among six exponential smoothing sions include the selection of activation functions of
models based on the demand pattern of data, the the hidden and output nodes, the training algorithm,
forecasting horizon, and the type of industry where data transformation or normalization methods, train-
the data come from. Tested with both simulated and ing and test sets, and performance measures.
actual data, their system has a high rate of correct In this section we survey the above-mentioned
demand pattern identification and gives fairly good modeling issues of a neural network forecaster. Since
recommendation for the appropriate forecasting the majority of researchers use exclusively fully-
method. Sohl and Venkatachalam (1995) also present connected-feedforward networks, we will focus on
a neural network approach to forecasting model issues of constructing this type of ANNs. Table 1
selection. summarizes the literature on ANN modeling issues.

Jhee et al. (1992) propose an ANN approach for
the identification of the Box-Jenkins models. Two 4.1. The network architecture
ANNs are separately used to model the autocorrela-
tion function (ACF) and the partial autocorrelation An ANN is typically composed of layers of nodes.
function (PACF) of the stationary series and their In the popular MLP, all the input nodes are in one
outputs give the orders of an ARMA model. In a input layer, all the output nodes are in one output
latter paper, Lee and Jhee (1994) develop an ANN layer and the hidden nodes are distributed into one or
system for automatic identification of Box-Jenkins more hidden layers in between. In designing an MLP,
model using the extended sample autocorrelation one must determine the following variables:
function (ESACF) as the feature extractor of a time
series. An MLP with a preprocessing noise filtering • the number of input nodes.
network is designed to identify the correct ARMA • the number of hidden layers and hidden nodes.
model. They find that this system performs quite • the number of output nodes.
well for artificially generated data and the real world
time series and conclude that the performance of The selection of these parameters is basically prob-
ESACF is superior to that of ACF and PACF in lem-dependent. Although there exists many different
identifying correct ARIMA models. Reynolds (1993) approaches such as the pruning algorithm (Sietsma
and Reynolds et al. (1995) also propose an ANN and Dow, 1988; Karnin, 1990; Weigend et al., 1991;
approach to Box-Jenkins model identification prob- Reed, 1993; Cottrell et al., 1995), the polynomial
lem. Two networks are developed for this task. The time algorithm (Roy et al., 1993), the canonical
first one is used to determine the number of regular decomposition technique (Wang et al., 1994), and
differences required to make a non-seasonal time the network information criterion (Murata et al.,
series stationary while the second is built for ARMA 1994) for finding the optimal architecture of an
model identification based on the information of ANN, these methods are usually quite complex in
ACF and PACF of the stationary series. nature and are difficult to implement. Furthermore

none of these methods can guarantee the optimal
solution for all real forecasting problems. To date,

4. Issues in ANN modeling for forecasting there is no simple clear-cut method for determination
of these parameters. Guidelines are either heuristic or

Despite the many satisfactory characteristics of based on simulations derived from limited experi-
ANNs, building a neural network forecaster for a ments. Hence the design of an ANN is more of an art
particular forecasting problem is a nontrivial task. than a science.
Modeling issues that affect the performance of an
ANN must be considered carefully. One critical 4.1.1. The number of hidden layers and nodes
decision is to determine the appropriate architecture, The hidden layer and nodes play very important
that is, the number of layers, the number of nodes in roles for many successful applications of neural
each layer, and the number of arcs which inter- networks. It is the hidden nodes in the hidden layer
connect with the nodes. Other network design deci- that allow neural networks to detect the feature, to
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Table 1
Summary of modeling issues of ANN forecasting

Researchers Data type Training/ [input [hidden [output Transfer fun. Training Data Performance

test size nodes layer:node nodes hidden:output algorithm normalization measure

Chakraborty et al. (1992) Monthly 90/10 8 1:8 1 Sigmoid:sigmoid BP* Log transform. MSE

price series

Cottrell et al. (1995) Yearly sunspots 220/? 4 1:2–5 1 Sigmoid:linear Second order None Residual variance and BIC

De Groot and Wurtz (1991) Yearly 221/35,55 4 1:0–4 1 Tanh:tanh BP.BFGS External linear Residual variance

sunspots LM** etc. to [0,1]

Foster et al. (1992) Yearly and N-k /k*** 5,8 1:3,10 1 N/A**** N/A N/A MdAPE and

monthly data GMARE

Ginzburg and Horn (1994) Yearly 220/35 12 1:3 1 Sigmoid:linear BP External linear RMSE

sunspots to [0,1]

Gorr et al. (1994) Student GPA 90%/10% 8 1:3 1 Sigmoid:linear BP None ME and MAD

Grudnitski and Osburn (1993) Monthly S and P N/A 24 2:(24)(8) 1 N/A BP N/A % prediction

and gold accuracy

Kang (1991) Simulated and 70/24 or 4,8,2 1,2:varied 1 Sigmoid:sigmoid GRG2 External linear MSE, MAPE

real time series 40/24 [21,1] or [0.1,0.9] MAD, U-coeff.

Kohzadi et al. (1996) Monthly cattle and 240/25 6 1:5 1 N/A BP None MSE, AME, MAPE

wheat prices

Kuan and Liu (1995) Daily exchange 1245/ varied 1:varied 1 Sigmoid:linear Newton N/A RMSE

rates varied

Lachtermacher and Fuller (1995) Annual river 100%/ n/a 1:n /a 1 Sigmoid:sigmoid BP External RMSE and Rank

flow and load synthetic simple Sum

Nam and Schaefer (1995) Monthly 3,6,9 yrs / 12 1:12,15,17 1 Sigmoid:sigmoid BP N/A MAD

airline traffic 1 yr.

Nelson et al. (1994) M-competition N218/18 varied 1:varied 1 N/A BP None MAPE

monthly

Schoneburg (1990) Daily stock 42/56 10 2:(10)(10) 1 Sigmoid:sine, BP External linear % prediction

price sigmoid to [0.1,0.9] accuracy

Sharda and Patil (1992) M-competition N2k /k*** 12 for 1:12 for 1,8 Sigmoid:sigmoid BP Across channel MAPE

time series monthly monthly linear [0.1,0.9]

Srinivasan et al. (1994) Daily load and 84/21 14 2:(19)(6) 1 Sigmoid:linear BP Along channel MAPE

relevant data to [0.1,0.9]

Tang et al. (1991) Monthly airline N224/24 1,6,12,24 1:5input 1,6,12,24 Sigmoid:sigmoid BP N/A SSE

and car sales node [
Tang and Fishwick (1993) M-competition N2k /k*** 12:month 1:5input 1,6,12 Sigmoid:sigmoid BP External linear MAPE

4:quarter node [ to [0.2,0.8]

Vishwakarma (1994) Monthly 300/24 6 2:(2)(2) 1 N/A N/A N/A MAPE

economic data

Weigend et al. (1992) Sunspots 221/59 12 1:8,3 1 Sigmoid:linear BP None ARV

exchange rate 501/215 61 1:5 2 Tanh:linear along channel ARV

(daily) statistical

Zhang (1994) Chaotic time 100 000/ 21 2:(20)(20) 1–5 Sigmoid:sigmoid BP None RMSE

series 500

* Backpropagation

** Levenberg-Marquardt

*** N is the number of training sample size; k is 6, 8 and 18 for yearly, monthly and quarterly data respectively.

**** Not available

capture the pattern in the data, and to perform nodes, simple perceptrons with linear output nodes
complicated nonlinear mapping between input and are equivalent to linear statistical forecasting models.
output variables. It is clear that without hidden Influenced by theoretical works which show that a
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single hidden layer is sufficient for ANNs to approxi- theoretical basis for selecting this parameter although
mate any complex nonlinear function with any a few systematic approaches are reported. For exam-
desired accuracy (Cybenko, 1989; Hornik et al., ple, both methods for pruning out unnecessary
1989), most authors use only one hidden layer for hidden nodes and adding hidden nodes to improve
forecasting purposes. However, one hidden layer network performance have been suggested. Gorr et
networks may require a very large number of hidden al. (1994) propose a grid search method to determine
nodes, which is not desirable in that the training time the optimal number of hidden nodes.
and the network generalization ability will worsen. The most common way in determining the number

Two hidden layer networks may provide more of hidden nodes is via experiments or by trial-and-
benefits for some type of problems (Barron, 1994). error. Several rules of thumb have also been pro-
Several authors address this problem and consider posed, such as, the number of hidden nodes depends
more than one hidden layer (usually two hidden on the number of input patterns and each weight
layers) in their network design processes. Srinivasan should have at least ten input patterns (sample size).
et al. (1994) use two hidden layers and this results in To help avoid the overfitting problem, some re-
a more compact architecture which achieves a higher searchers have provided empirical rules to restrict the
efficiency in the training process than one hidden number of hidden nodes. Lachtermacher and Fuller
layer networks. Zhang (1994) finds that networks (1995) give a heuristic constraint on the number of
with two hidden layers can model the underlying hidden nodes. In the case of the popular one hidden
data structure and make predictions more accurately layer networks, several practical guidelines exist.
than one hidden layer networks for a particle time These include using ‘‘2n11’’ (Lippmann, 1987;
series from the Santa Fe forecasting competition. He Hecht-Nielsen, 1990), ‘‘2n’’ (Wong, 1991), ‘‘n’’
also tries networks with more than two hidden layers (Tang and Fishwick, 1993), ‘‘n /2’’ (Kang, 1991),
but does not find any improvement. Their findings where n is the number of input nodes. However none
are in agreement with that of Chester (1990) who of these heuristic choices works well for all prob-
discusses the advantages of using two hidden layers lems.
over single hidden layer for general function map- Tang and Fishwick (1993) investigate the effect of
ping. Some authors simply adopt two hidden layers hidden nodes and find that the number of hidden
in their network modeling without comparing them nodes does have an effect on forecast performance
to the one hidden layer networks (Vishwakarma, but the effect is not quite significant. We notice that
1994; Grudnitski and Osburn, 1993; Lee and Jhee, networks with the number of hidden nodes being
1994). equal to the number of input nodes are reported to

These results seem to support the conclusion made have better forecasting results in several studies (De
by Lippmann (1987); Cybenko (1988); Lapedes and Groot and Wurtz, 1991; Chakraborty et al., 1992;
Farber (1988) that a network never needs more than Sharda and Patil, 1992; Tang and Fishwick, 1993).
two hidden layers to solve most problems including
forecasting. In our view, one hidden layer may be 4.1.2. The number of input nodes
enough for most forecasting problems. However, The number of input nodes corresponds to the
using two hidden layers may give better results for number of variables in the input vector used to
some specific problems, especially when one hidden forecast future values. For causal forecasting, the
layer network is overladen with too many hidden number of inputs is usually transparent and relatively
nodes to give satisfactory results. easy to choose. In a time series forecasting problem,

The issue of determining the optimal number of the number of input nodes corresponds to the number
hidden nodes is a crucial yet complicated one. In of lagged observations used to discover the underly-
general, networks with fewer hidden nodes are ing pattern in a time series and to make forecasts for
preferable as they usually have better generalization future values. However, currently there is no sug-
ability and less overfitting problem. But networks gested systematic way to determine this number. The
with too few hidden nodes may not have enough selection of this parameter should be included in the
power to model and learn the data. There is no model construction process. Ideally, we desire a
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small number of essential nodes which can unveil the (Keenan, 1985; Tsay, 1986; McLeod and Li, 1983;
unique features embedded in the data. Too few or Lee et al., 1993) have been proposed. However, most
too many input nodes can affect either the learning tests are model dependent and none is superior to
or prediction capability of the network. others in all situations. These problems also apply to

Tang and Fishwick (1993), p. 376 claim that the the determination of the number of lags in a par-
number of input nodes is simply the number of ticular nonlinear model. One frequently used criter-
autoregressive (AR) terms in the Box-Jenkins model ion for nonlinear model identification is the Akaike
for a univariate time series. This is not true because information criterion (AIC). However, there are still
(1) for moving average (MA) processes, there are no controversies surrounding the use of this criterion
AR terms; and (2) Box-Jenkins models are linear (De Gooijer and Kumar, 1992; Cromwell et al.,
models. The number of AR terms only tells the 1994).
number of linearly correlated lagged observations Recently, genetic algorithms have received consid-
and it is not appropriate for the nonlinear relation- erable attention in the optimal design of a neural
ships modeled by neural networks. network (Miller et al., 1989; Guo and Uhrig, 1992;

Most authors design experiments to help select the Jones, 1993; Schiffmann et al., 1993). Genetic
number of input nodes while others adopt some algorithms are optimization procedures which can
intuitive or empirical ideas. For example, Sharda and mimic natural selection and biological evolution to
Patil (1992) and Tang et al. (1991) use 12 inputs for achieve more efficient ANN learning process (Hap-
monthly data and four for quarterly data heuristical- pel and Murre, 1994). Due to their unique properties,
ly. Going through the literature, we find no con- genetic algorithms are often implemented in com-
sistent results for the issue of determining this mercial ANN software packages.
important parameter. Some authors report the benefit
of using more input nodes (Tang et al., 1991) while 4.1.3. The number of output nodes
others find just the opposite (Lachtermacher and The number of output nodes is relatively easy to
Fuller, 1995). It is interesting to note that Lach- specify as it is directly related to the problem under
termacher and Fuller (1995) report both bad effects study. For a time series forecasting problem, the
of more input nodes for single-step-ahead forecasting number of output nodes often corresponds to the
and good effects for multi-step prediction. Some forecasting horizon. There are two types of forecast-
researchers simply adopt the number of input nodes ing: one-step-ahead (which uses one output node)
used by previous studies (Ginzburg and Horn, 1994) and multi-step-ahead forecasting. Two ways of mak-
while others arbitrarily choose one for their applica- ing multi-step forecasts are reported in the literature.
tions. Cheung et al. (1996) propose to use maximum The first is called the iterative forecasting as used in
entropy principles to identify the time series lag the Box-Jenkins model in which the forecast values
structure. are iteratively used as inputs for the next forecasts.

In our opinion, the number of input nodes is In this case, only one output node is necessary. The
probably the most critical decision variable for a second called the direct method is to let the neural
time series forecasting problem since it contains the network have several output nodes to directly fore-
important information about the complex (linear cast each step into the future. Zhang (1994) cascaded
and/or nonlinear) autocorrelation structure in the method combines these two types of multi-step-
data. We believe that this parameter can be de- ahead forecasting. Results from Zhang (1994) show
termined by theoretical research in nonlinear time that the direct prediction is much better than the
series analysis and hence improve the neural network iterated method. However, Weigend et al. (1992)
model building process. Over the past decade, a report that the direct multi-step prediction performs
number of statistical tests for nonlinear dependencies significantly worse than the iterated single-step pre-
of time series such as Lagrange multiplier tests diction for the sunspot data. Hill et al. (1994)
(Luukkonen et al., 1988; Saikkonen and Luukkonen, conclude similar findings for 111 M-competition
1988), likelihood ratio-based tests (Chan and Tong, time series.
1986), bispectrum tests (Hinich, 1982), and others In our opinion, the direct multiple-period neural
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network forecasting may be better for the following should be pointed out again that autocorrelation in
two reasons. First, the neural network can be built essence measures only the linear correlation between
directly to forecast multi-step-ahead values. It has the lagged data. In reality, correlation can be non-
the benefits over the iterative method like the Box- linear and Box-Jenkins models will not be able to
Jenkins method in that the iterative method con- model these nonlinear relationships. ANNs are better
structs only a single function which is used to predict in capturing the nonlinear relationships in the data.
one point each time and then iterates this function on For example, consider an MA(1) model: x 5´ 1t t

its own outputs to predict points in the future. As the 0.6´ . Since the white noise ´ is not forecast-t21 t11

forecasts move forward, past observations are able at time t (0 is the best forecast value), the
ˆ ˆdropped off. Instead, forecasts rather than observa- one-step-ahead forecast is x 5 0.6(x 2 x ). How-t11 t t

tions are used to forecast further future points. Hence ever, at time t, we can not predict x 5´ 1t12 t12

it is typical that the longer the forecasting horizon, 0.6´ since both ´ and ´ are future terms oft11 t12 t11

the less accurate the iterative method. This also white noise series and are unforecastable. Hence the
ˆexplains why Box-Jenkins models are traditionally optimum forecast is simply x 5 0. Similarly, k-t12

ˆmore suitable for short-term forecasting. This point step-ahead forecasts: x 5 0 for k $ 3. Theset1k

can be seen clearly from the following k-step fore- results are expected since the autocorrelation is zero
casting equations used in iterative methods such as for any two points in the MA(1) series separated by
Box-Jenkins: two lags or more. However, if there is a nonlinear

correlation between observations separated by twox̂ 5 f(x ,x , ? ? ? ,x ),t11 t t21 t2n lags or more, the Box-Jenkins model can not capture
this structure, causing more than one-step-aheadˆ ˆx 5 f(x ,x ,x , ? ? ? ,x ),t12 t11 t t21 t2n11 values unforecastable. This is not the case for an
ANN forecaster.ˆ ˆ ˆx 5 f(x ,x ,x ,x , ? ? ? ,x ),t13 t12 t11 t t21 t2n12

? 4.1.4. The interconnection of the nodes
? The network architecture is also characterized by
?

the interconnections of nodes in layers. The con-
ˆ ˆ ˆx 5 f(x ,x , ? ? ? ,x ,x ,x ,t1k t1k21 t1k22 t11 t t21 nections between nodes in a network fundamentally

determine the behavior of the network. For most? ? ? ,x ),t2n1k21
forecasting as well as other applications, the net-

ˆwhere x is the observation at time t, x is the forecastt t works are fully connected in that all nodes in one
for time t, f is the function estimated by the ANN. layer are only fully connected to all nodes in the next
On the other hand, an ANN with k output nodes can higher layer except for the output layer. However it
be used to forecast multi-step-ahead points directly is possible to have sparsely connected networks
using all useful past observations as inputs. The (Chen et al., 1991) or include direct connections
k-step-ahead forecasts from an ANN are from input nodes to output nodes (Duliba, 1991).

Adding direct links between input layer and outputx̂ 5 f (x ,x , ? ? ? ,x )t11 1 t t21 t2n

layer may be advantageous to forecast accuracy since
they can be used to model the linear structure of thex̂ 5 f (x ,x , ? ? ? ,x )t12 2 t t21 t2n
data and may increase the recognition power of the

?
network. Tang and Fishwick (1993) investigate the?

? effect of direct connection for one-step-ahead fore-
casting but no general conclusion is reached.x̂ 5 f (x ,x , ? ? ? ,x )t1k k t t21 t2n

where f ,? ? ?, f are functions determined by the 4.2. Activation function1 k

network.
Second, Box-Jenkins methodology is based heavi- The activation function is also called the transfer

ly on the autocorrelations among the lagged data. It function. It determines the relationship between
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inputs and outputs of a node and a network. In a number of authors simply use the logistic activa-
general, the activation function introduces a degree tion functions for all hidden and output nodes (see,
of nonlinearity that is valuable for most ANN for example, Tang et al., 1991; Chakraborty et al.,
applications. Chen and Chen (1995) identify general 1992; Sharda and Patil, 1992; Tang and Fishwick,
conditions for a continuous function to qualify as an 1993; Lachtermacher and Fuller, 1995; Nam and
activation function. Loosely speaking, any differenti- Schaefer, 1995). De Groot and Wurtz (1991) and
able function can qualify as an activation function in Zhang and Hutchinson (1993) use the hyperbolic
theory. In practice, only a small number of ‘‘well- tangent transfer functions in both hidden and output
behaved’’ (bounded, monotonically increasing, and layer. Schoneburg (1990) uses mixed logistic and
differentiable) activation functions are used. These sine hidden nodes and a logistic output node. Notice
include: that when using these nonlinear squashing functions

in the output layer, the target output values usually
need to be normalized to match the range of actual1. The sigmoid (logistic) function:
outputs from the network since the output node with21f(x) 5 (1 1 exp(2x)) ; a logistic or a hyperbolic tangent function has a
typical range of [0,1] or [21,1] respectively.

2. The hyperbolic tangent (tanh) function: Conventionally, the logistic activation function
seems well suited for the output nodes for manyf(x) 5 (exp(x) 2 exp(2x)) /(exp(x) 1 exp(2x));
classification problems where the target values are
often binary. However, for a forecasting problem3. The sine or cosine function:
which involves continuous target values, it is reason-

f(x) 5 sin(x) or f(x) 5 cos(x); able to use a linear activation function for output
nodes. Rumelhart et al. (1995) heuristically illustrate

4. The linear function: the appropriateness of using linear output nodes for
forecasting problems with a probabilistic model off(x) 5 x.
feedforward ANNs, giving some theoretic evidence

Among them, logistic transfer function is the most to support the use of linear activation functions for
popular choice. output nodes. Researchers who use linear output

nodes include Lapedes and Farber (1987), (1988);
There are some heuristic rules for the selection of Weigend et al. (1990), (1991), (1992); Wong (1991);

the activation function. For example, Klimasauskas Ginzburg and Horn (1992), (1994); Gorr et al.
(1991) suggests logistic activation functions for (1994); Srinivasan et al. (1994); Vishwakarma
classification problems which involve learning about (1994); Cottrell et al. (1995); Kuan and Liu (1995),
average behavior, and to use the hyperbolic tangent etc. It is important to note that feedforward neural
functions if the problem involves learning about networks with linear output nodes have the limitation
deviations from the average such as the forecasting that they cannot model a time series containing a
problem. However, it is not clear whether different trend (Cottrell et al., 1995). Hence, for this type of
activation functions have major effects on the per- neural networks, pre- differencing may be needed to
formance of the networks. eliminate the trend effects. So far no research has

Generally, a network may have different activation investigated the relative performance of using linear
functions for different nodes in the same or different and nonlinear activation functions for output nodes
layers (see Schoneburg (1990) and Wong (1991) for and there have been no empirical results to support
examples). Yet almost all the networks use the same preference of one over the other.
activation functions particularly for the nodes in the
same layer. While the majority of researchers use 4.3. Training algorithm
logistic activation functions for hidden nodes, there
is no consensus on which activation function should The neural network training is an unconstrained
be used for output nodes. Following the convention, nonlinear minimization problem in which arc
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weights of a network are iteratively modified to usually chosen through experimentation. As the
minimize the overall mean or total squared error learning rate and the momentum can take on any
between the desired and actual output values for all value between 0 and 1, it is actually impossible to do
output nodes over all input patterns. The existence of an exhaustive search to find the best combinations of
many different optimization methods (Fletcher, these training parameters. Only selected values are
1987) provides various choices for neural network considered by the researchers. For example, Sharda
training. There is no algorithm currently available to and Patil (1992) try nine combinations of three
guarantee the global optimal solution for a general learning rates (0.1, 0.5, 0.9) and three momentum
nonlinear optimization problem in a reasonable values (0.1, 0.5, 0.9).
amount of time. As such, all optimization algorithms Tang and Fishwick (1993) conclude that the
in practice inevitably suffer from the local optima training parameters play a critical role in the per-
problems and the most we can do is to use the formance of ANNs. Using different learning parame-
available optimization method which can give the ters, they re-test the performance of ANNs for
‘‘best’’ local optima if the true global solution is not several time series which have been previously
available. reported to have worse results with ANNs. They find

The most popularly used training method is the that for each of these time series there is an ANN
backpropagation algorithm which is essentially a with appropriate learning parameters, which per-
gradient steepest descent method. For the gradient forms significantly better. Tang et al. (1991) also
descent algorithm, a step size,, which is called the study the effect of training parameters on the ANN
learning rate in ANNs literature, must be specified. learning. They report that high learning rate is good
The learning rate is crucial for backpropagation for less complex data and low learning rate with high
learning algorithm since it determines the magnitude momentum should be used for more complex data
of weight changes. It is well known that the steepest series. However, there are inconsistent conclusions
descent suffers the problems of slow convergence, with regard to the best learning parameters (see, for
inefficiency, and lack of robustness. Furthermore it example, Chakraborty et al., 1992; Sharda and Patil,
can be very sensitive to the choice of the learning 1992; Tang and Fishwick, 1993), which, in our
rate. Smaller learning rates tend to slow the learning opinion, are due to the inefficiency and unrobustness
process while larger learning rates may cause net- of the gradient descent algorithm.
work oscillation in the weight space. One way to In light of the weakness of the conventional
improve the original gradient descent method is to backpropagation algorithm, a number of variations or
include an additional momentum parameter to allow modifications of backpropagation, such as the adap-
for larger learning rates resulting in faster conver- tive method (Jacobs, 1988; Pack et al., 1991a,b),
gence while minimizing the tendency to oscillation quickprop (Falhman, 1989), and second-order methods
(Rumelhart et al., 1986b). The idea of introducing (Parker, 1987; Battiti, 1992; Cottrell et al., 1995) etc.,
the momentum term is to make the next weight have been proposed. Among them, the second-order
change in more or less the same direction as the methods (such as BFGS and Levenberg-Marquardt
previous one and hence reduce the oscillation effect methods) are more efficient nonlinear optimization
of larger learning rates. Yu et al. (1995) describe a methods and are used in most optimization packages.
dynamic adaptive optimization method of the learn- Their faster convergence, robustness, and the ability
ing rate using derivative information. They also to find good local minima make them attractive in
show that the momentum can be effectively de- ANN training. De Groot and Wurtz (1991) have
termined by establishing the relationship between the tested several well-known optimization algorithms
backpropagation and the conjugate gradient method. such as quasi-Newton, BFGS, Levenberg-Marquardt,

The standard backpropagation technique with and conjugate gradient methods and achieved signifi-
momentum is adopted by most researchers. Since cant improvements in training time and accuracy for
there are few systematic ways of selecting the time series forecasting.
learning rate and momentum simultaneously, the Recently, Hung and Denton (1993), and Subrama-
‘‘best’’ values of these learning parameters are nian and Hung (1993) propose to use a general-
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purpose nonlinear optimizer, GRG2 (Lasdon and Four methods for input normalization are summa-
Waren, 1986), in training the networks. The benefits rized by Azoff (1994):
of GRG2 have been reported in the ANN literature
for many different problems (Patuwo et al., 1993; 1. Along channel normalization: A channel is de-
Subramanian and Hung, 1993; Lenard et al., 1995). fined as a set of elements in the same position
GRG2 is a widely available optimization software over all input vectors in the training or test set.
which solves nonlinear optimization problems using That is, each channel can be thought of as an
the generalized reduced gradient method. With ‘‘independent’’ input variable. The along channel
GRG2, there is no need to select learning parameters normalization is performed column by column if
such as learning rate and momentum. Rather, a the input vectors are put into a matrix. In other
different set of parameters, such as stopping criteria, words, it normalizes each input variable indi-
search direction procedure, and the bounds on vari- vidually.
ables, need to be specified and they can be set at 2. Across channel normalization: This type of nor-
their default values. malization is performed for each input vector

Another relevant issue in training an ANN is the independently, that is, normalization is across all
specification of an objective function or a cost the elements in a data pattern.
function. Typically SSE and MSE are used since 3. Mixed channel normalization: As the name sug-
they are defined in terms of errors. Other objective gests, this method uses some kind of combina-
functions such as maximizing the return, profit or tions of along and across normalization.
utility may be more appropriate for some problems 4. External normalization: All the training data are
like financial forecasting. Refenes (1995) (pp. 21– normalized into a specific range.
26) shows that the choice of a cost function may
significantly influence the network predictive per- The choice of the above methods usually depends on
formance if the learning algorithm (backpropagation) the composition of the input vector. For a time series
and other network parameters are fixed. Thus, one forecasting problem, the external normalization is
possible way to deal directly with the ultimate often the only appropriate normalization procedure.
objective function is to change the search algorithm The time lagged observations from the same source
from backpropagation type to genetic algorithms, are used as input variables and can retain the
simulated annealing, or other optimization methods structure between channels as in the original series.
which allow search over arbitrary utility functions. For causal forecasting problems, however, the along

channel normalization method should be used since
4.4. Data normalization the input variables are typically the independent

variables used to predict the dependent variable.
Nonlinear activation functions such as the logistic Sharda and Patil (1992) use the across channel

function typically have the squashing role in restrict- normalization method for the time series data which
ing or squashing the possible output from a node to, may create a serious problem in that the same data in
typically, (0,1) or (21,1). Data normalization is different training patterns are normalized differently
often performed before the training process begins. and hence valuable information in the underlying
As mentioned earlier, when nonlinear transfer func- structure of the original time series may be lost.
tions are used at the output nodes, the desired output For each type of normalization approach discussed
values must be transformed to the range of the actual above, the following formulae are frequently used:
outputs of the network. Even if a linear output
transfer function is used, it may still be advantageous • linear transformation to [0,1]: x 5(x 2x ) /n 0 min

to standardize the outputs as well as the inputs to (x 2x ) (Lapedes and Farber, 1988);max min

avoid computational problems (Lapedes and Farber, • linear transformation to [a,b]: x 5(b2a)(x 2n 0

1988), to meet algorithm requirement (Sharda and x ) /(x 2x )1a (Srinivasan et al., 1994);min max min

¯Patil, 1992), and to facilitate network learning • statistical normalization: x 5(x 2x ) /s (Weigendn 0

(Srinivasan et al., 1994). et al., 1992);
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• simple normalization: x 5x /x (Lachter- outputs must be rescaled to the original range. Fromn 0 max

macher and Fuller, 1995), the user’s point of view, the accuracy obtained by
the ANNs should be based on the rescaled data set.

where x and x represent the normalized and Performance measures should also be calculatedn 0

¯original data; x , x , x and s are the minimum, based on the rescaled outputs. However only a fewmin max

maximum, mean, and standard deviation along the authors clearly state whether the performance mea-
columns or rows, respectively. sures are calculated on the original or transformed

It is unclear whether there is a need to normalize scale.
the inputs because the arc weights could undo the
scaling. There are several studies on the effects of 4.5. Training sample and test sample
data normalization on the network learning. Shanker
et al. (1996) investigate the effectiveness of linear As we mentioned earlier, a training and a test
and statistical normalization methods for classifica- sample are typically required for building an ANN
tion problems. They conclude that, in general, data forecaster. The training sample is used for ANN
normalization is beneficial in terms of the classifica- model development and the test sample is adopted
tion rate and the mean squared error, but the benefit for evaluating the forecasting ability of the model.
diminishes as network and sample size increase. In Sometimes a third one called the validation sample is
addition, data normalization usually slows down the also utilized to avoid the overfitting problem or to
training process. Engelbrecht et al. (1994) conclude determine the stopping point of the training process
similar results and propose an automatic scaling (Weigend et al., 1992). It is common to use one test
method called gamma learning rule to allow network set for both validation and testing purposes par-
self-scaling during the learning process and eliminate ticularly with small data sets. In our view, the
the need to normalize the data before training. selection of the training and test sample may affect

Normalization of the output values (targets) is the performance of ANNs.
usually independent of the normalization of the The first issue here is the division of the data into
inputs. For time series forecasting problems, how- the training and test sets. Although there is no
ever, the normalization of targets is typically per- general solution to this problem, several factors such
formed together with the inputs. The choice of range as the problem characteristics, the data type and the
to which inputs and targets are normalized depends size of the available data should be considered in
largely on the activation function of output nodes, making the decision. It is critical to have both the
with typically [0, 1] for logistic function and [21, 1] training and test sets representative of the population
for hyperbolic tangent function. Several researchers or underlying mechanism. This has particular impor-
scale the data only to the range of [0.1, 0.9] tance for time series forecasting problems. Inappro-
(Srinivasan et al., 1994) or [0.2, 0.8] (Tang and priate separation of the training and test sets will
Fishwick, 1993) based on the fact that the nonlinear affect the selection of optimal ANN structure and the
activation functions usually have asymptotic limits evaluation of ANN forecasting performance.
(they reach the limits only for infinite input values) The literature offers little guidance in selecting the
and the guess that possible outputs may lie, for training and the test sample. Most authors select
example, only in [0.1, 0.9], or even [0.2, 0.8] for a them based on the rule of 90% vs. 10%, 80% vs.
logistic function (Azoff, 1994). However, it is easy 20% or 70% vs. 30%, etc. Some choose them based
to see that this is not necessarily true since the output on their particular problems. Gorr et al. (1994)
from a logistic node can be as small as 0.000045 or employ a bootstrap resampling design method to
as large as 0.99995 for the net input of only 210 or partition the whole sample into ten independent
10, respectively. subsamples. The estimation of the model is im-

It should be noted that, as a result of normalizing plemented using nine subsamples and then the model
the target values, the observed output of the network is tested with the remaining subsample. Lachter-
will correspond to the normalized range. Thus, to macher and Fuller (1995) use all the available data
interpret the results obtained from the network, the for training and use so-called synthetic time series
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for test so as to reduce the data requirement in required by linear models in order to perform well.
building ANN forecasters. Following the convention Kang (1991) finds that ANN forecasting models
in M-competition, the last 18, 8 and 6 points of the perform quite well even with sample sizes less than
data series are often used as test samples for 50 while the Box-Jenkins models typically require at
monthly, quarterly and yearly data respectively (Fos- least 50 data points in order to forecast successfully.
ter et al., 1992; Sharda and Patil, 1992; Tang and
Fishwick, 1993). Granger (1993) suggests that for 4.6. Performance measures
nonlinear forecasting models, at least 20 percent of
any sample should be held back for a out-of-sample Although there can be many performance mea-
forecasting evaluation. sures for an ANN forecaster like the modeling time

Another closely related factor is the sample size. and training time, the ultimate and the most im-
No definite rule exists for the requirement of the portant measure of performance is the prediction
sample size for a given problem. The amount of data accuracy it can achieve beyond the training data.
for the network training depends on the network However, a suitable measure of accuracy for a given
structure, the training method, and the complexity of problem is not universally accepted by the forecast-
the particular problem or the amount of noise in the ing academicians and practitioners. An accuracy
data on hand. In general, as in any statistical measure is often defined in terms of the forecasting
approach, the sample size is closely related to the error which is the difference between the actual
required accuracy of the problem. The larger the (desired) and the predicted value. There are a
sample size, the more accurate the results will be. number of measures of accuracy in the forecasting
Nam and Schaefer (1995) test the effect of different literature and each has advantages and limitations
training sample size and find that as the training (Makridakis et al., 1983). The most frequently used
sample size increases, the ANN forecaster performs are
better.

Given a certain level of accuracy, a larger sample oue ut]• the mean absolute deviation (MAD) 5 ;Nis required as the underlying relationship between 2• the sum of squared error (SSE) 5 o(e ) ;toutputs and inputs becomes more complex or the 2o(e )t]]• the mean squared error (MSE) 5 ;noise in the data increases. However, in reality, N ]]Œ• the root mean squared error (RMSE) 5 MSE;sample size is constrained by the availability of data.
• the mean absolute percentage error (MAPE) 5The accuracy of a particular forecasting problem

e1 t] ]ou u (100),may be also affected by the sample size used in the N yt

training and/or test set.
Note that every model has limits on accuracy it where e is the individual forecast error; y is thet t

can achieve for real problems. For example, if we actual value; and N is the number of error terms.
consider only two factors: the noise in the data and In addition to the above, other accuracy measures
the underlying model, then the accuracy limit of a are also found in the literature. For example, the
linear model such as the Box-Jenkins is determined mean error (ME) is used by Gorr et al. (1994),
by the noise in the data and the degree to which the Theil’s U-statistic is tried by Kang (1991) and Hann
underlying functional form is nonlinear. With more and Steurer (1996), and the median absolute per-
observations, the model accuracy can not improve if centage error (MdAPE) and the geometric mean
there is a nonlinear structure in the data. In ANNs, relative absolute error (GMRAE) are used by Foster
noise alone determines the limit on accuracy due to et al. (1992). Weigend et al. (1990), (1991), (1992)
its capability of the general function approximation. use the average relative variance (ARV). Cottrell et
With a large enough sample, ANNs can model any al. (1995) and De Groot and Wurtz (1991) adopt the
complex structure in the data. Hence, ANNs can residual variance and Akaike information criterion
benefit more from large samples than linear statisti- and Bayesian information criterion (BIC).
cal models can. It is interesting to note that ANNs do Because of the limitations associated with each
not necessarily require a larger sample than is individual measure, one may use multiple perform-
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ance measures in a particular problem. However, one that the data is linear without much disturbance. We
method judged to be the best along one dimension is can not expect ANNs to do better than linear models
not necessarily the best in terms of other dimensions. for linear relationships. In other cases, it may simply
The famous M-competition results (Makridakis et be that the ideal network structure is not used for the
al., 1982) consolidate this point. Kang (1991) finds data set. Table 2 summarizes the literature on the
that ANNs do not significantly depend on the relative performance of ANNs.
performance criteria for simulated data but appear to Several papers are devoted to comparing ANNs
be dependent on the accuracy measure for actual with the conventional forecasting approaches. Sharda
data. and Patil (1990), (1992) conduct a forecasting

It is important to note that the first four of the competition between ANN models and the Box-
above frequently used performance measures are Jenkins method using 75 and 111 time series data
absolute measures and are of limited value when from the M-competition. They conclude that simple
used to compare different time series. MSE is the ANN models can forecast as well as the Box-Jenkins
most frequently used accuracy measure in the litera- method. Tang et al. (1991), and Tang and Fishwick
ture. However, the merit of using the MSE is much (1993), using both ANN and ARIMA models,
debated in evaluating the relative accuracy of fore- analyze several business time series and re-examine
casting methods across different data sets (see, for 14 series from 75 series used in Sharda and Patil
example, Clements and Hendry (1993) and Arm- (1990) which are reported to have larger errors. They
strong and Fildes (1995)). Furthermore, the MSE conclude that ANNs outperform the Box-Jenkins for
defined above may not be appropriate for ANN time series with short memory or with more irregu-
model building with training sample since it ignores larity. However, for long memory series, both
the important information about the number of models achieve about the same performance. Kang
parameters (arc weights) the model has to estimate. (1991) obtains similar results in a more systematic
From the point of view of statistics, as the number of study. Kohzadi et al. (1996) compare ANNs with
estimated parameters in the model goes up, the ARIMA models in forecasting monthly live cattle
degrees of freedom for the overall model goes down, and wheat prices. Their results show that ANNs
thus raising the possibility of overfitting in the forecast considerably and consistently more accu-
training sample. An improved definition of MSE for rately and can capture more turning points than
the training part is the total sum of squared errors ARIMA models. Hill et al. (1996) compare neural
divided by the degrees of freedom, which is the networks with six traditional statistical methods to
number of observations minus the number of arc forecast 111 M-competition time series. Their find-
weights and node biases in an ANN model. ings indicate that the neural network models are

significantly better than traditional statistical and
human judgment methods when forecasting monthly

5. The relative performance of ANNs in and quarterly data. For the annual data, neural
forecasting networks and traditional methods are comparable.

They also conclude that neural networks are very
One should note the performance of neural net- effective for discontinuous time series. Based on 384

works in forecasting as compared to the currently economic and demographic time series, Foster et al.
widely-used well-established statistical methods. (1992) find that ANNs are significantly inferior to
There are many inconsistent reports in the literature linear regression and a simple average of exponential
on the performance of ANNs for forecasting tasks. smoothing methods. Brace et al. (1991) also find that
The main reason is, as we discussed in the previous the performance of ANNs is not as good as many
section, that a large number of factors including other statistical methods commonly used in the load
network structure, training method, and sample data forecasting.
may affect the forecasting ability of the networks. Nelson et al. (1994) discuss the issue of whether
For some cases where ANNs perform worse than ANNs can learn seasonal patterns in a time series.
linear statistical models, the reason may simply be They train networks with both deseasonalized and



G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62 53

Table 2
The relative performance of ANNs with traditional statistical methods

Study Data Conclusions

Brace et al. (1991) 8 electric load ANNs are not as good as traditional methods.
series (daily)

Caire et al. (1992) One electric ANNs are hardly better than ARIMA for 1-
consumption data step-ahead forecast, but much more reliable
(daily) for longer step-ahead forecasts.

Chakraborty et al. (1992) One trivariate price ANNs outperform statistical model by at
time series (monthly) least one order of magnitude.

De Groot and Wurtz (1991) Sunspots activity ANNs are not the best but comparable to
time series (yearly) the best linear or nonlinear statistical model.

Denton (1995) Several computer Under ideal situations, ANNs are as good
generated data sets as regression; under less ideal situations,

ANNs perform better.
Duliba (1991) Transportation data ANNs outperform linear regression model

(quarterly) for random effects specification; but worse
than the fixed effects specification.

Fishwick (1989) Ballistic trajectory ANNs are worse than linear regression and
data surface response model.

Foster et al. (1992) 384 economic and ANNs are significantly inferior to linear
demographic time series regression and simple average of exponential
(quarterly and yearly) smoothing methods.

Gorr et al. (1994) Student grade point No significant improvement with ANNs in
averages predicting students’ GPAs over linear models.

Hann and Steurer (1996) Weekly and monthly ANNs outperform the linear models for weekly
exchange rate data and both give almost the same results

for monthly data.
Hill et al. (1994) A systematic sample ANNs are significantly better than statistical
and Hill et al. (1996) from 111 M-competition and human judgment methods for quarterly

time series (monthly, and monthly data; about the same for yearly
quarterly and yearly) data; ANNs seem to be better in forecasting

monthly and quarterly data than in
forecasting yearly data.

Kang (1991) 50 M-competition time The best ANN model is always better than
series Box-Jenkins; ANNs perform better as

forecasting horizon increases; ANNs need
less data to perform as well as ARIMA.

Kohzadi et al. (1996) Monthly live cattle and ANNs are considerably and consistently
wheat prices better and can find more turning points.

Lachtermacher and Fuller (1995) 4 stationary river flow and For stationary time series, ANNs have a
4 nonstationary electricity slightly better overall performance than
load time series (yearly) traditional methods; for nonstationary series,

ANNs are almost much better than ARIMA.
Marquez et al. (1992) Simulated data for 3 ANNs perform comparatively as well as

regression models regression models.
Nam and Schaefer (1995) One airline passenger data ANNs are better than time series regression

(monthly) and exponential smoothing.
Refenes (1993) One exchange rate time ANNs are much better than exponential

series (hourly) smoothing and ARIMA.
Sharda and Patil (1990) and 75 and 111 M-competition ANNs are comparable to Box-Jenkins models.
Sharda and Patil (1992) time series (monthly,

quarterly, and yearly)
Srinivasan et al. (1994) One set of load data ANNs are better than regression and

ARMA models.
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Table 2. Continued

Study Data Conclusions

Tang et al. (1991) 3 business time series For long memory series, ANNs and
(monthly) ARIMA models are about the same; for

short memory series, ANNs are better.
Tang and Fishwick (1993) 14 M-competition time Same as Tang et al. (1991) plus ANNs seem

series and 2 additional to be better as forecasting horizon increases.
business time series
(monthly and quarterly)

Weigend et al. (1992) Sunspots activity ANNs perform better than TAR and
bilinear models.

Exchange rate (daily) ANNs are significantly better than random
walk model.

the raw data, and evaluate them using 68 monthly grade point averages. They do not find any signifi-
time series from the M-competition. Their results cant statistical difference in the improvement of
indicate that the ANNs are unable adequately to prediction accuracy among the four methods consid-
learn seasonality and that prior deseasonalization of ered even if there is some evidence of nonlinearities
seasonal time series is beneficial to forecast accura- in the data. As the authors discussed, the reasons that
cy. However, Sharda and Patil (1992) conclude that their simple ANNs do not perform any better are (1)
the seasonality of the time series does not affect the there are no underlying systematic patterns in the
performance of ANNs and ANNs are able implicitly data and/or (2) the full power of the ANNs has not
to incorporate seasonality. been exploited.

Several empirical studies find that ANNs seem to Experimenting with computer generated data for
be better in forecasting monthly and quarterly time several different experimental conditions, Denton
series (Kang, 1991; Hill et al., 1994, 1996) than in (1995) shows that, under ideal conditions with all
forecasting yearly data. This may be due to the fact regression assumptions, there is little difference in
that monthly and quarterly data usually contain more the predictability between ANNs and regression
irregularities (seasonality, cyclicity, nonlinearity, models. However, under less ideal conditions such as
noise) than the yearly data, and ANNs are good at outliers, multicollinearity, and model misspecifica-
detecting the underlying pattern masked by noisy tion, ANNs perform better. On the other hand, Hill et
factors in a complex system. al. (1994) report that ANNs are vulnerable to

Tang et al. (1991) and Tang and Fishwick (1993) outliers.
try to answer the question: under what conditions Most other researchers also make comparisons
ANN forecasters can perform better than the tradi- between ANNs and the corresponding traditional
tional time series forecasting methods such as Box- methods in their particular applications. For example,
Jenkins models. The first study is based on only Fishwick (1989) reports that the performance of
three and the second on 16 time series. Their ANNs is worse than that of the simple linear
findings are that (1) ANNs perform better as the regression and the response surface model for a
forecast horizon increases, which is also confirmed ballistics trajectory function approximation problem.
by other studies (Kang, 1991; Caire et al., 1992; Hill De Groot and Wurtz (1991) compare ANNs with the
et al., 1994); (2) ANNs perform better for short linear (Box-Jenkins) and nonlinear (bilinear and
memory series (see also Sharda and Patil, 1992); and TAR) statistical models in forecasting the sunspots
(3) ANNs give better forecasting results with more data. Chakraborty et al. (1992) contrast their ANNs
input nodes. with the multivariate ARMA model for a multi-

Gorr et al. (1994) compare ANNs with several variate price time series. Weigend et al. (1992) study
regression models such as linear regression and the sunspots activity and exchange rate forecasting
stepwise polynomial regression in predicting student problems with ANN and other traditional methods
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popular in these areas. Refenes (1993) compares his (1) How do ANNs model the autocorrelated time
ANN model with exponential smoothing and series data and produce better results than conven-
ARIMA model using hourly tick data of exchange tional linear and nonlinear methods?
rate. Srinivasan et al. (1994) evaluate the perform-
ance of ANNs in forecasting short-term electrical (2) Given a specific forecasting problem, how do we
load and compare it to popular traditional methods of systematically build an appropriate network that is
linear regression and ARIMA models. In forecasting best suited for the problem?
exchange rate, Hann and Steurer (1996) find that
ANNs outperform the linear models when weekly (3) What is the best training method or algorithm for
data are used and if monthly data are used, ANNs forecasting problems, particularly time series fore-
and linear methods yield similar results. casting problems?

(4) How should we go about designing the sampling
6. Conclusions and the future scheme, pre- and post-processing the data? What are

the effects of these factors on the predictive per-
We have presented a review of the current state of formance of ANNs?

the use of artificial neural networks for forecasting These problems are not easy to tackle. However,
application. This review is comprehensive but by no given too many factors which could affect the
means exhaustive, given the fast growing nature of performance of the ANN method, limited empirical
the literature. The important findings are summarized study may not be sufficient to address all the issues.
as follows: Like statistical models, ANNs have weaknesses as

well as strengths. While ANNs have many desired
• The unique characteristics of ANNs – adapt- features which make them quite suitable for a variety

ability, nonlinearity, arbitrary function mapping of problem areas, they will never be the panacea.
ability – make them quite suitable and useful for There cannot be a universal model that will predict
forecasting tasks. Overall, ANNs give satisfactory everything well for all problems (Gershenfeld and
performance in forecasting. Weigend, 1993). Indeed there will probably not be a

• A considerable amount of research has been done single best forecasting method for all situations
in this area. The findings are inconclusive as to (Bowerman and O’Connell, 1993). The mixed re-
whether and when ANNs are better than classical sults of M-competition as well as the results from
methods. Section 5 of this paper give clear evidence. ANNs’

• There are many factors that can affect the per- capabilities make them potentially valuable for some
formance of ANNs. However, there are no sys- forecasting problems, but not for others. Gorr (1994)
tematic investigations of these issues. The shot- believes that ANNs can be more appropriate for the
gun (trial-and-error) methodology for specific following situations: (1) large data sets; (2) problems
problems is typically adopted by most research- with nonlinear structure; (3) the multivariate time
ers, which is the primary reason for inconsisten- series forecasting problems.
cies in the literature. To best utilize ANNs for forecasting problems as

well as other tasks, it is important to understand the
ANNs offer a promising alternative approach to limitations of ANNs and what they can do as well as
traditional linear methods. However, while ANNs what they cannot do. Several points need to be
provide a great deal of promises, they also embody a emphasized:
large degree of uncertainty. There are several un-
solved mysteries in this area. Since most results are • ANNs are nonlinear methods per se. For static
based on limited empirical studies, the words linear processes with little disturbance, they may
‘‘seem’’ and ‘‘appear’’ are used quite commonly in not be better than linear statistical methods.
the literature. Few theoretical results are established • ANNs are black-box methods. There is no explicit
in this area. Many important research questions still form to explain and analyze the relationship
remain. Among them: between inputs and outputs. This causes difficulty
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in interpreting results from the networks. Also no series data and make better forecasting. Particularly,
formal statistical testing methods can be used for the discovery of wavelet functions that serve as basis
ANNs. functions has reawakened the interest in the time–

• ANNs are prone to have overfitting problems due frequency analysis of nonstationary nonlinear time
to their typical, large parameter set to be esti- series (Rioul and Vetterli, 1991; Wallich, 1991). As
mated. space, time, frequency, and phase are the four

• There are no structured methods today to identify mathematical domains by which signals or indicators
what network structure can best approximate the about time series are analyzed, wavelet networks
function, mapping the inputs to outputs. Hence, which combine the wavelet theory and ANNs can be
the tedious experiments and trial-and-error pro- very promising tools for understanding nonlinear
cedures are often used. nonstationary processes. We believe that the future of

• ANNs usually require more data and computer ANN forecasting will be even brighter as more and
time for training. more research efforts are devoted to this area.

Overall, there may be a limit on what ANNs can
learn from the data and make predictions. This Acknowledgements
limitation of ANNs may come from their non-
parametric property (Geman et al., 1992). Since they We would like to thank Dr. Pelikan, the associate
are data-driven and model-free, ANNs are quite editor, and three anonymous referees for their con-
general but can suffer high variance in the estima- structive and helpful comments.
tion, that is, they may be too dependent on the
particular samples observed. On the other hand, the
model-based methods such as Box-Jenkins are bias-

Referencesprone. They are likely to be incorrect for the task on
hand. It is clear that ANNs as well as traditional

Aiken, M., Krosp, J., Vanjani, M., Govindarajulu, C., Sexton, R.,linear and nonlinear methods can not do everything
1995. A neural network for predicting total industrial pro-

equally well. duction. Journal of End User Computing 7 (2), 19–23.
Given the current status of the ANN forecasting, Akaike, H., 1974. A new look at the statistical model identifica-

tion. IEEE Transactions on Automatic Control 19 (6), 716–what will be the future of the area? Will it be a
723.passing fad (Chatfield, 1993)? Many successful

Amari, S., 1994. A comment on ‘‘Neural networks: A review fromforecasting applications of ANNs suggest that they
a statistical perspective’’. Statistical Science 9 (1), 31–32.

can be one of the very useful tools in forecasting Amirikian, B., Nishimura, H., 1994. What size network is good for
researchers’ and practitioners’ arsenal. Yet as Amari generalization of a specific task of interest?. Neural Networks 7
(1994) comments, without theoretical foundations, it (2), 321–329.

Arizmendi, C.M., Sanchez, J.R., Ramos, N.E., Ramos, G.I., 1993.is difficult for ANN technology to take off from the
Time series prediction with neural nets: Application to airbornecurrent rather ‘‘easy and shallow’’ technology to a
pollen forecasting. International Journal of Biometeorology 37,

more fundamental one. Furthermore, the current 139–144.
ANN model building needs lengthy experimentation Armstrong, J.S., Fildes, R., 1995. Correspondence: On the selec-
and tinkering which is a major roadblock for the tion of error measures for comparisons among forecasting

methods. Journal of Forecasting 14, 67–71.extensive use of the method. New modeling meth-
Azoff, E.M., 1994. Neural Network Time Series Forecasting ofodology is needed to ease model building and to

Financial Markets. John Wiley and Sons, Chichester.
make ANNs more acceptable to forecasting prac- Bacha, H., Meyer, W., 1992. A neural network architecture for
titioners. Recently, fuzzy expert system (Bakirtzis et load forecasting. In: Proceedings of the IEEE International
al., 1995; Dash et al., 1995; Kim et al., 1995; Joint Conference on Neural Networks, 2, pp. 442–447.

Bakirtzis, A.G., Theocharis, J.B., Kiartzis, S.J., Satsios, K.J.,Bataineh et al., 1996) and wavelet analysis (Zhang
1995. Short term load forecasting using fuzzy neural networks.and Benveniste, 1992; Delyon et al., 1995; Zhang et
IEEE Transactions on Power Systems 10 (3), 1518–1524.

al., 1995; Szu et al., 1996; Yao et al., 1996) have Balestrino, A., Bini Verona, F., Santanche, M., 1994. Time series
been proposed as supplementary tools to ANNs. analysis by neural networks: Environmental temperature fore-
They can aid ANNs to extract the features of time casting. Automazione e Strumentazione 42 (12), 81–87.



G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62 57

Barker, D., 1990. Analyzing financial health: Integrating neural Chester, D.L., 1990. Why two hidden layers are better than one?
networks and expert systems. PC AI 4 (3), 24–27. In: Proceedings of the International Joint Conference on Neural

Barron, A.R., 1994. A comment on ‘‘Neural networks: A review Networks, pp. 1265–1268.
from a statistical perspective’’. Statistical Science 9 (1), 33–35. Cheung, K.H., Szeto, K.Y., Tam, K.Y., 1996. Maximum-entropy

Bataineh, S., Al-Anbuky, A., Al-Aqtash, S., 1996. An expert approach to identify time-series lag structure for developing
system for unit commitment and power demand prediction intelligent forecasting systems. International Journal of Compu-
using fuzzy logic and neural networks. Expert Systems 13 (1), tational Intelligence and Organization 1 (2), 94–106.
29–40. Chiang, W.-C., Urban, T.L., Baldridge, G.W., 1996. A neural

Battiti, R., 1992. First- and second-order methods for learning: network approach to mutual fund net asset value forecasting.
Between steepest descent and Newton’s method. Neural Omega 24, 205–215.
Computation 4 (2), 141–166. Chng, E.S., Chen, S., Mulgrew, B., 1996. Gradient radial basis

Baum, E.B., Haussler, D., 1989. What size net gives valid function networks for nonlinear and nonstationary time series
generalization?. Neural Computation 1, 151–160. prediction. IEEE Transactions on Neural Networks 7 (1),

Bergerson, K., Wunsch, D.C., 1991. A commodity trading model 190–194.
based on a neural network–expert system hybrid. In: Proceed- Chu, C.H., Widjaja, D., 1994. Neural network system for forecast-
ings of the IEEE International Conference on Neural Networks, ing method selection. Decision Support Systems 12, 13–24.
Seattle, WA, pp. 1289–1293. Clements, M.P., Hendry, D.F., 1993. On the limitations of

Borisov, A.N., Pavlov, V.A., 1995. Prediction of a continuous comparing mean square forecast errors. Journal of Forecasting
function with the aid of neural networks. Automatic Control 12, 615–637.
and Computer Sciences 29 (5), 39–50. Coleman, K.G., Graettinger, T.J., Lawrence, W.F., 1991. Neural

Bowerman, B.L., O’Connell, R.T., 1993. Forecasting and Time networks for bankruptcy prediction: The power to solve
Series: An Applied Approach, 3rd ed. Duxbury Press, Belmont, financial problems. AI Review 5, July /August, 48–50.
CA. Connor, J.T., Martin, R.D., Atlas, L.E., 1994. Recurrent neural

Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis: Forecast- networks and robust time series prediction. IEEE Transaction
ing and Control. Holden-Day, San Francisco, CA. on Neural Networks 51 (2), 240–254.

Brace, M.C., Schmidt, J., Hadlin, M., 1991. Comparison of the Cottrell, M., Girard, B., Girard, Y., Mangeas, M., Muller, C., 1995.
forecasting accuracy of neural networks with other established Neural modeling for time series: a statistical stepwise method
techniques. In: Proceedings of the First Forum on Application for weight elimination. IEEE Transactions on Neural Networks
of Neural Networks to Power Systems, Seattle, WA, pp. 31–35. 6 (6), 1355–1364.

Caire, P., Hatabian, G., Muller, C., 1992. Progress in forecasting Cromwell, J.B., Labys, W.C., Terraza, M., 1994. Univariate Tests
by neural networks. In: Proceedings of the International Joint for Time Series Models. Saga Publications, Thousand Oaks.
Conference on Neural Networks, 2, pp. 540–545. Cybenko, G., 1988. Continuous Valued Neural Networks with

Chakraborty, K., Mehrotra, K., Mohan, C.K., Ranka, S., 1992. Two Hidden Layers are Sufficient. Technical Report, Tuft
Forecasting the behavior of multivariate time series using University.
neural networks. Neural Networks 5, 961–970. Cybenko, G., 1989. Approximation by superpositions of a sigmoi-

Chan, D.Y.C., Prager, D., 1994. Analysis of time series by neural dal function. Mathematical Control Signals Systems 2, 303–
networks. In: Proceedings of the IEEE International Joint 314.
Conference on Neural Networks, 1, pp. 355–360. Dash, P.K., Ramakrishna, G., Liew, A.C., Rahman, S., 1995.

Chan, W.S., Tong, H., 1986. On tests for non-linearity in time Fuzzy neural networks for time-series forecasting of electric
series analysis. Journal of Forecasting 5, 217–228. load. IEE Proceedings – Generation, Transmission and Dis-

Chang, I., Rapiraju, S., Whiteside, M., Hwang, G., 1991. A neural tribution 142 (5), 535–544.
network to time series forecasting. In: Proceedings of the De Gooijer, J.G., Kumar, K., 1992. Some recent developments in
Decision Science Institute., 3, pp. 1716–1718. non-linear time series modelling, testing, and forecasting.

Chatfield, C., 1993. Neural networks: Forecasting breakthrough or International Journal of Forecasting 8, 135–156.
passing fad?. International Journal of Forecasting 9, 1–3. De Groot, C., Wurtz, D., 1991. Analysis of univariate time series

Chen, C.H., 1994. Neural networks for financial market predic- with connectionist nets: a case study of two classical examples.
tion. In: Proceedings of the IEEE International Conference on Neurocomputing 3, 177–192.
Neural Networks, 2, pp. 1199–1202. Delyon, B., Juditsky, A., Benveniste, A., 1995. Accuracy analysis

Chen, S.T., Yu, D.C., Moghaddamjo, A.R., 1991. Weather sensi- for wavelet approximations. IEEE Transactions on Neural
tive short-term load forecasting using nonfully connected Networks 6 (2), 332–348.
artificial neural network. In: Proceedings of the IEEE/Power Denton, J.W., 1995. How good are neural networks for causal
Engineering Society Summer Meeting, 91 SM 449–8 PWRS. forecasting? The Journal of Business Forecasting 14 (2),

Chen, T., Chen, H., 1995. Universal approximation to nonlinear Summer, 17–20.
operators by neural networks with arbitrary activation functions Deppisch, J., Bauer, H.-U., Geisel, T., 1991. Hierarchical training
and its application to dynamical systems. IEEE Transactions on of neural networks and prediction of chaotic time series.
Neural Networks 6 (4), 911–917. Physics Letters 158, 57–62.

Cheng, B., Titterington, D.M., 1994. Neural networks: A review Donaldson, R.G., Kamstra, M., 1996. Forecasting combining with
from a statistical perspective. Statistical Science 9 (1), 2–54. neural networks. Journal of Forecasting 15, 49–61.



58 G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62

Duliba, K.A., Contrasting neural nets with regression in predicting Ginzburg, I., Horn, D., 1994. Combined neural networks for time
performance in the transportation industry. In: Proceedings of series analysis. Advances in Neural Information Processing
the Annual IEEE International Conference on Systems Sci- Systems 6, 224–231.
ences., 25, pp. 163–170. Gorr, L., 1994. Research prospective on neural network forecast-

Dutta, S., Shekhar, S., 1988. Bond rating: A non-conservative ing. International Journal of Forecasting 10, 1–4.
application of neural networks. In: Proceedings of the IEEE Gorr, W.L., Nagin, D., Szczypula, J., 1994. Comparative study of
International Conference on Neural Networks. San Diego, artificial neural network and statistical models for predicting
California, 2, pp. 443–450. student grade point averages. International Journal of Forecast-

El-Sharkawi, M.A., Oh, S., Marks, R.J., Damborg, M.J., Brace, ing 10, 17–34.
C.M., 1991. Short-term electric load forecasting using an Granger, C.W.J., 1993. Strategies for modelling nonlinear time-
adaptively trained layered perceptron. In: Proceedings of the series relationships. The Economic Record 69 (206), 233–238.
1st International Forum on Application of Neural Networks to Granger, C.W.J., Anderson, A.P., 1978. An Introduction to Bilinear

¨Power Systems, 3–6. Time Series Models. Vandenhoeck and Ruprecht, Gottingen.
Engelbrecht, A.P., Cloete, I., Geldenhuys, J., Zurada, J.M., 1994. Granger, C.W.J., Terasvirta, T., 1993. Modelling Nonlinear Econ-

Automatic scaling using gamma learning for feedforward omic Relationships. Oxford University Press, Oxford.
neural networks. In: Anderson, D.Z. (Ed.), Neural Information Grudnitski, G., Osburn, L., 1993. Forecasting S and P and gold
Processing Systems, American Institute of Physics, New York, futures prices: An application of neural networks. The Journal
pp. 374–381. of Futures Markets 13 (6), 631–643.

Engle, R.F., 1982. Autoregressive conditional heteroskedasticity Guo, Z., Uhrig, R., 1992. Using genetic algorithm to select inputs
with estimates of the variance of UK inflation. Econometrica for neural networks. In: Proceedings of the Workshop on
50, 987–1008. Combinations of Genetic Algorithms and Neural Networks,

Ezugwu, E.O., Arthur, S.J., Hins, E.L., 1995. Too-wear prediction COGANN92, pp. 223–234.
using artificial neural networks. Journal of Materials Processing Haas, D.J., Milano, J., Flitter, L., 1995. Prediction of helicopter
Technology 49, 255–264. component loads using neural networks. Journal of the Ameri-

Falhman, S., 1989. Faster-learning variations of back-propagation: can Helicopter Society 40 (1), 72–82.
An empirical study. In: Touretzky, D., Hinton, G., Sejnowski, Hammerstrom, D., 1993. Neural networks at work, IEEE Spec-
T., (Eds.), Proceedings of the 1988 Connectionist Models trum, June, 26–32.
Summer School, pp. 38–51. Hann, T.H., Steurer, E., 1996. Much ado about nothing? Exchange

Fishwick, P.A., 1989. Neural network models in simulation: A rate forecasting: Neural networks vs. linear models using
comparison with traditional modeling approaches. In: Proceed- monthly and weekly data. Neurocomputing 10, 323–339.
ings of Winter Simulation Conference, Washington, D.C., pp. Happel, B.L.M., Murre, J.M.J., 1994. The design and evolution of
702–710. modular neural network architectures. Neural Networks 7,

Fletcher, D., Goss, E., 1993. Forecasting with neural networks – 985–1004.
An application using bankruptcy data. Information and Man- Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley,
agement 24, 159–167. Menlo Park, CA.

Fletcher, R., 1987. Practical Methods of Optimization, 2nd ed. Hertz, J., Krogh, A., Palmer, R.G., 1991. Introduction to the
John Wiley, Chichester. Theory of Neural Computation. Addison-Wesley, Reading,

Foster, W.R., Collopy, F., Ungar, L.H., 1992. Neural network MA.
forecasting of short, noisy time series. Computers and Chemi- Hill, T., Marquez, L., O’Connor, M., Remus, W., 1994. Artificial
cal Engineering 16 (4), 293–297. neural networks for forecasting and decision making. Interna-

Funahashi, K., 1989. On the approximate realization of continuous tional Journal of Forecasting 10, 5–15.
mappings by neural networks. Neural Networks 2, 183–192. Hill, T., O’Connor, M., Remus, W., 1996. Neural network models

Gately, E., 1996. Neural Networks for Financial Forecasting. John for time series forecasts. Management Sciences 42 (7), 1082–
Wiley, New York. 1092.

Geman, S., Bienenstock, E., Doursat, T., 1992. Neural networks Hinich, M.J., 1982. Testing for Gaussianity and linearity of a
and the bias /variance dilemma. Neural Computation 5, 1–58. statistionary time series. Journal of Time Series Analysis 3,

Gent, C.R., Sheppard, C.P., 1992. Predicting time series by a fully 169–176.
connected neural network trained by back propagation. Com- Hinton, G.E., 1992. How neural networks learn from experience,
puting and Control Engineering Journal 3 (3), May, 109–112. Scientific American, September, 145–151.

Gershenfeld, N.A., Weigend, A.S., 1993. The future of time series: Ho, K.L., Hsu, Y.Y., Yang, C.C., 1992. Short term load forecasting
learning and understanding. In: Weigend, A.S., Gershenfeld, using a multilayer neural network with an adaptive learning
N.A. (Eds.), Time Series Prediction: Forecasting the Future and algorithm. IEEE Transactions on Power Systems 7 (1), 141–
Understanding the Past. Addison-Wesley, Reading, MA, pp. 149.
1–70. Hopfield, J.J., 1982. Neural networks and physical systems with

Ginzburg, I., Horn, D., 1991. Learnability of time series. In: emergent collective computational abilities. Proceedings of the
Proceedings of the IEEE International Joint Conference on National Academy of the Sciences of the U.S.A. 79, 2554–
Neural Networks, 3, pp. 2653–2657. 2558.

Ginzburg, I., Horn, D., 1992. Learning the rule of a time series. Hornik, K., 1991. Approximation capabilities of multilayer feed-
International Journal of Neural Systems 3 (2), 167–177. forward networks. Neural Networks 4, 251–257.



G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62 59

Hornik, K., 1993. Some new results on neural network approxi- Kiartzis, S.J., Bakirtzis, A.G., Petridis, V., 1995. Short-term load
mation. Neural Networks 6, 1069–1072. forecasting using neural networks. Electric Power Systems

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedfor- Research 33, 1–6.
ward networks are universal approximators. Neural Networks Kim, K.H., Park, J.K., Hwang, K.J., Kim, S.H., 1995. Im-
2, 359–366. plementation of hybrid short-term load forecasting system

Hsu, Y.Y., Yang, C.C., 1991. Design of artificial neural networks using artificial neural networks and fuzzy expert systems. IEEE
for short-term load forecasting, Part I: selforganising feature Transactions on Power Systems 10 (3), 1534–1539.
maps for day type identification. IEE Proceedings-C: Genera- Kimoto, T., Asakawa, K., Yoda, M., Takeoka, M., 1990. Stock
tion, Transmission and Distribution 138 (5), 407–413. Market prediction system with modular neural networks. In:

Hsu, Y.Y., Yang, C.C., 1991. Design of artificial neural networks Proceedings of the IEEE International Joint Conference on
for short-term load forecasting, Part II: Multilayer feedforward Neural Networks. San Diego, California, 2, pp. 11–16.
networks for peak load and valley load forecasting. IEE Klimasauskas, C.C., 1991. Applying neural networks. Part 3:
Proceedings- C; Generation, Transmission and Distribution 138 Training a neural network, PC-AI, May/June, 20–24.
(5), 414–418. Kohonen, T., 1982. Self-organized formation of topologically

Hu, M.J.C., 1964. Application of the adaline system to weather correct feature maps. Biological Cybernetics 43, 59–69.
forecasting. Master Thesis, Technical Report 6775-1, Stanford Kohzadi, N., Boyd, M.S., Kermanshahi, B., Kaastra, I., 1996. A
Electronic Laboratories, Stanford, CA, June. comparison of artificial neural network and time series models

Hung, M.S., Denton, J.W., 1993. Training neural networks with for forecasting commodity prices. Neurocomputing 10, 169–
the GRG2 nonlinear optimizer. European Journal of Operation- 181.
al Research 69, 83–91. Kryzanowski, L., Galler, M., Wright, D.W., 1993. Using artificial

Huntley, D.G., 1991. Neural nets: An approach to the forecasting neural networks to pick stocks. Financial Analysts Journal,
of time series. Social Science Computer Review 9 (1), 27–38. July /August, 21–27.

Hush, D.R., Horne, B.G., 1993. Progress in supervised neural Kuan, C.-M., Liu, T., 1995. Forecasting exchange rates using
networks: What’s new since Lippmann? IEEE Signal Process- feedforward and recurrent neural networks. Journal of Applied
ing Magazine, January, 8–38. Econometrics 10, 347–364.

Hwang, J.N. and S. Moon, 1991. Temporal difference method for Kuan, C.-M., White, H., 1994. Artificial neural networks: an
multi-step prediction: Application to power load forecasting. economic perspective. Economic Reviews 13 (1), 1–91.
In: Proceedings of the First Forum on Application of Neural Lachtermacher, G., Fuller, J.D., 1995. Backpropagation in time-
Networks to Power Systems, pp. 41–45. series forecasting. Journal of Forecasting 14, 381–393.

Irie, B., Miyake, S., 1988. Capabilities of three-layered percep- Lapedes, A., Farber, R., 1987. Nonlinear signal processing using
trons. In: Proceedings of the IEEE International Conference on neural networks: prediction and system modeling. Technical
Neural Networks, I, pp. 641–648. Report LA-UR-87-2662, Los Alamos National Laboratory, Los

Jacobs, R.A., 1988. Increased rates of convergence through Alamos, NM.
learning rate adaptation. Neural Networks 1 (4), 295–308. Lapedes, A., Farber, R., 1988. How neural nets work. In:

Jhee, W.C., Lee, K.C., Lee, J.K., 1992. A neural network approach Anderson, D.Z., (Ed.), Neural Information Processing Systems,
for the identification of the Box-Jenkins model. Network: American Institute of Physics, New York, pp. 442–456.
Computation in Neural Systems 3, 323–339. Lasdon, L.S., Waren, A.D., 1986. GRG2 User’s Guide, School of

Jones, A.J., 1993. Genetic algorithms and their applications to the Business Administration, University of Texas at Austin.
design of neural networks. Neural Computing and Applications Lee, J.K., Jhee, W.C., 1994. A two-stage neural network approach
1, 32–45. for ARMA model identification with ESACF. Decision Support

Jones, R.D., Lee, Y.C., Barnes, C.W., Flake, G.W., Lee, K., Lewis, Systems 11, 461–479.
P.S., et al., 1990. Function approximation and time series Lee, K.Y., Cha, Y.T., Ku, C.C., 1991. A study on neural networks
prediction with neural networks. In: Proceedings of the IEEE for short-term load forecasting. In: Proceedings of the First
International Joint Conference on Neural Networks, San Diego, Forum on Application of Neural Networks to Power Systems,
CA, 1, pp. 649–665 Seattle, WA, pp. 26–30.

Kaastra, I., Boyd, M.S., 1995. Forecasting futures trading volume Lee, K.Y., Park, J.H., 1992. Short-term load forecasting using an
using neural networks. The Journal of Futures Markets 15 (8), artificial neural network. IEEE Transactions on Power Systems
953–970. 7 (1), 124–132.

Kang, S., 1991. An Investigation of the Use of Feedforward Lee, T.W., White, H., Granger, C.W.J., 1993. Testing for neglected
Neural Networks for Forecasting. Ph.D. Thesis, Kent State nonlinearity in time series meodels. Journal of Econometrics
University. 56, 269–290.

Karnin, E.D., 1990. A simple procedure for pruning back-propaga- Lenard, M.J., Alam, P., Madey, G.R., 1995. The application of
tion trained neural networks. IEEE Transactions on Neural neural networks and a qualitative response model to the
Networks 1 (2), 239–245. auditor’s going concern uncertainty decision. Decision Science

Karunanithi, N., Grenney, W.J., Whitley, D., Bovee, K., 1994. 26 (2), 209–226.
Neural networks for river flow prediction. Journal of Comput- Levin, A.U., Narendra, K.S., 1993. Control of nonlinear dy-
ing in Civil Engineering 8 (2), 201–220. namical systems using neural networks: Controllability and

Keenan, D.M., 1985. A Turkey nonadditivity-type test for time Stabilization. IEEE Transactions on Neural Networks 4 (2),
series nonlinearity. Biometrika 72 (1), 39–44. 192–206.



60 G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62

Li, M., Mehrotra, K., Mohan, C., Ranka, S., 1990. Sunspots Odom, M.D., Sharda, R., 1990. A neural network model for
bankruptcy prediction. In: Proceedings of the IEEE Internation-numbers forecasting using neural networks. In: Proceedings of
al Joint Conference on Neural Networks. San Diego, CA, 2, pp.the 5th IEEE International Symposium on Intelligent Control,
163–168pp. 524–529.

Pack, D.C., El-Sharkawi, M.A., Marks II, R.J., 1991a. AnLippmann, R.P., 1987. An introduction to computing with neural
adaptively trained neural network. IEEE Transactions onnets, IEEE ASSP Magazine, April, 4–22.
Neural Networks 2 (3), 334–345.Lowe, D., Webb, A.R., 1990. Time series prediction by adaptive

Pack, D.C., El-Sharkawi, M.A., Marks II, R.J., Atlas, L.E.,networks: A dynamical systems perspective. IEE proceedings-F
Damborg, M.J., 1991b. Electric load forecasting using an138 (1), 17–24.
artificial neural network. IEEE Transactions on Power Systems

Lubero, R.G., 1991. Neural networks for water demand time series
6 (2), 442–449.

forecasting. In: Proceedings of the International Workshop on
Pankratz, A., 1983. Forecasting with Univariate Box-Jenkins

Artificial Neural Networks, pp. 453–460. Models: Concepts and Cases. John Wiley, New York.
Luukkonen, R., Saikkonen, P., Terasirta, T., 1988. Testing lineari- Park, J., Sandberg, I.W., 1991. Universal approximation using

ty in univariate time series models. Scandinavian Journal of radial basis function networks. Neural Computation 3, 246–
Statistics 15, 161–175. 257.

Maasoumi, E., Khotanzad, A., Abaye, A., 1994. Artificial neural Park, J., Sandberg, I.W., 1993. Approximation and radial basis
networks for some macroeconomic series: A first report. function networks. Neural Computation 5, 305–316.
Econometric Reviews 13 (1), 105–122. Parker, D.B., 1987. Optimal algorithm for adaptive networks:

Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibdon, Second order back propagation, second order direct propaga-
M., Lewandowski, R. et al., 1982. The accuracy of extrapola- tion, and second order Hebbian learning. In: Proceedings of the
tion (time series) methods: Results of a forecasting competi- IEEE International Conference on Neural Networks, 2, pp.
tion. Journal of Forecasting 1 (2), 111–153. 593–600.

Makridakis, S., Wheelwright, S.C., McGee, V.E., 1983. Fore- Patuwo, E., Hu, M.Y., Hung, M.S., 1993. Two-group classification
casting: Methods and Applications, 2nd ed. John Wiley, using neural networks. Decision Science 24 (4), 825–845.
New York. Payeur, P., Le-Huy, H., Gosselin, C.M., 1995. Trajectory predic-

Marquez, L., Hill, T., O’Connor, M., Remus, W., 1992. Neural tion for moving objects using artificial neural networks. IEEE
network models for forecast a review. In: IEEE proceedings of Transactions on Industrial Electronic 42 (2), 147–158.
the 25th Hawaii International Conference on System Sciences., Pelikan, E., de Groot, C., Wurtz, D., 1992. Power consumption in
4, pp. 494–498. West-Bohemia: Improved forecasts with decorrelating con-

Masson, E., Wang, Y.-J., 1990. Introduction to computation and nectionist networks. Neural Network World 2 (6), 701–712.
learning in artificial neural networks. European Journal of Peng, T.M., Hubele, N.F., Karady, G.G., 1992. Advancement in
Operational Research 47, 1–28. the application of neural networks for short-term load forecast-

McLeod, A.I., Li, W.K., 1983. Diagnostic checking ARMA time ing. IEEE Transactions on Power Systems 7 (1), 250–257.
series models using squared residual autocorrelations. Journal Poli, I., Jones, R.D., 1994. A neural net model for prediction.
of Time Series Analysis 4, 169–176. Journal of American Statistical Association 89 (425), 117–

Miller, G.F., Todd, P.M., Hegde, S.U., 1989. Designing neural 121.
networks using genetic algorithms. In: Schaffer, J.D. (Ed.), Reed, R., 1993. Pruning algorithms – A survey. IEEE Transac-
Proceedings of the Third International Conference on Genetic tions on Neural Networks, 4 (5), 740–747.
Algorithms. Morgon Kaufman, San Francisco, pp. 370–384. Refenes, A.N., 1993. Constructive learning and its application to

Muller, C., Mangeas, M., 1993. Neural networks and time series currency exchange rate forecasting. In: Trippi, R.R., Turban, E.
forecasting: a theoretical approach. In: IEEE Systems, Man, (Eds.), Neural Networks in Finance and Investing: Using
and Cybernetics Conference Proceedings, pp. 590–594. Artificial Intelligence to Improve Real-World Performance.

Murata, N., Yoshizawa, S., Amari, S., 1994. Network information Probus Publishing Company, Chicago.
criterion-determining the number of hidden units for an artifi- Refenes, A.N., 1995. Neural Networks in the Capital Markets.
cial neural network model. IEEE Transactions on Neural John Wiley, Chichester.
Networks 5 (6), 865–872. Refenes, A.N., Zapranis, A., Francis, G., 1994. Stock performance

Nam, K., Schaefer, T., 1995. Forecasting international airline modeling using neural networks: A comparative study with
passenger traffic using neural networks. Logistics and Trans- regression models. Neural Networks 7 (2), 375–388.
portation 31 (3), 239–251. Reilly, D.L., Cooper, L.N., 1990. An overview of neural networks:

Narendra, K.S., Parthasarathy, K., 1990. Identification and control early models to real world systems. In: Zornetzer, S.F., Davis,
of dynamical systems using neural networks. IEEE Transac- J.L., Lau, C. (Eds.), An Introduction to Neural and Electronic
tions on Neural Networks 1 (1), 4–27. Networks. Academic Press, New York, pp. 227–248.

Nelson, M., Hill, T., Remus, B., O’Connor, M., 1994. Can neural Reynolds, S.B., 1993. A Neural Network Approach to Box-
networks be applied to time series forecasting and learn Jenkins Model Identification. Ph.D. Thesis, University of
seasonal patterns: An empirical investigation. In: Proceedings Alabama.
of the Twenty seventh Annual Hawaii International Conference Reynolds, S.B., Mellichamp, J.M., Smith, R.E., 1995. Box-Jenkins
on System Sciences, pp. 649–655. forecast model identification. AI Expert, June, 15–28.



G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62 61

Ricardo, S.Z., Guedes, K., Vellasco M., Pacheco, M.A., 1995. Shanker, M., Hu, M.Y., Hung, M.S., 1996. Effect of data stan-
Short-term load forecasting using neural nets. In: Mira, J., dardization on neural network training. Omega 24 (4), 385–
Sandoval, F. (Eds.), From Natural to Artificial Neural Compu- 397.
tation. Springer, Berlin, pp. 1001–1008. Sharda, R., 1994. Neural networks for the MS/OR analyst: An

Rioul, O., Vetterli, M., 1991. Wavelet and signal processing. IEEE application bibliography. Interfaces 24 (2), 116–130.
Signal Processing Magazine 8 (4), 14–38. Sharda, R., Patil, R.B., 1990. Neural networks as forecasting

Ripley, B.D., 1993. Statistical aspects of neural networks. In: experts: An empirical test. In: Proceedings of the International
Barndorff-Nielsen, O.E., Jensen, J.L., Kendall, W.S. (Eds.), Joint Conference on Neural Networks. Washington, D.C., 2, pp.
Networks and Chaos-Statistical and Probabilistic Aspects. 491–494.
Chapman and Hall, London, pp. 40–123. Sharda, R., Patil, R.B., 1992. Connectionist approach to time

Rissanen, J., 1987. Stochastic complexity (with discussion). series prediction: An empirical test. Journal of Intelligent
Journal of the Royal Statistical Society, B, 49, 223–239 and Manufacturing 3, 317–323.
252–265. Shin, Y., Ghosh, J., 1995. Ridge polynomial networks. IEEE

Rosen, B.E., 1993. Neural network moving averages for time Transactions on Neural Networks 6 (3), 610–622.
series prediction. In: SPIE, Vol. 1966, Science of Artificial Sietsma, J., Dow, R., 1988. Neural net pruning–Why and how? In:
Neural Networks, 2, 448–456. Proceedings of the IEEE International Conference on Neural

Roy, A., Kim, L.S., Mukhopadhyay, S., 1993. A polynomial time Networks, 1, pp. 325–333.
algorithm for the construction and training of a class of Smith, M., 1993. Neural Networks for Statistical Modeling. Van
multilayer perceptrons. Neural Networks 6, 535–545. Nostrand Reinhold, New York.

Ruiz-Suarez, J.C., Mayora-Ibarra, O.A., Torres-Jimenez, J., Ruiz- Sohl, J.E., Venkatachalam, A.R., 1995. A neural network approach
Suarez, L.G., 1995. Short-term ozone forecasting by artificial to forecasting model selection. Information and Management
neural networks. Advances in Engineering Software 23, 143– 29, 297–303.
149. Srinivasan, D., Liew, A.C., Chang, C.S., 1994. A neural network

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning short-term load forecaster. Electric Power Systems Research
representations by backpropagating errors. Nature 323 (6188), 28, 227–234.
533–536. Subramanian, V., Hung, M.S., 1993. A GRG2-based system for

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning training neural networks: Design and computational ex-
internal representation by back- propagating errors. In: perience. ORSA Journal on Computing 5 (4), 386–394.
Rumelhart, D.E., McCleland, J.L., the PDP Research Group Suykens, J.A.K., Vandewalle, J.P.L., De Moor, B.L.R., 1996.
(Eds.), Parallel Distributed Processing: Explorations in the Artificial Neural Networks for Modelling and Control of
Microstructure of Cognition. MIT Press, MA. Nonlinear Systems. Kluwer, Boston.

Rumelhart, D.E., Widrow, B., Lehr, M.A., 1994. The basic ideas Szu, H., Telfer, B., Garcia, J., 1996. Wavelet transforms and
in neural networks. Communications of the ACM 37 (3), neural networks for compression and recognition. Neural
87–92. Networks 9 (4), 695–708.

Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y., 1995. Tam, K.Y., Kiang, M.Y., 1992. Managerial applications of neural
Backpropagation: the basic theory. In: Chauvin, Y., Rumelhart, networks: The case of bank failure predictions. Management
D.E. (Eds.), Backpropagation: Theory, Architectures, and Science 38 (7), 926–947.
Applications. Lawrence Erlbaum Associates, New Jersey, pp. Tang, Z., Almeida, C., Fishwick, P.A., 1991. Time series forecast-
1–34. ing using neural networks vs Box-Jenkins methodology. Simu-

Saikkonen, P., Luukkonen, R., 1988. Lagrange multiplier tests for lation 57 (5), 303–310.
testing non-linearities in time series models. Scandinavian Tang, Z., Fishwick, P.A., 1993. Feedforward neural nets as models
Journal of Statistics 15, 55–68. for time series forecasting. ORSA Journal on Computing 5 (4),

Salchenkerger, L.M., Cinar, E.M., Lash, N.A., 1992. Neural 374–385.
networks: A new tool for predicting thrift failures. Decision Tong, H., Lim, K.S., 1980. Threshold autoregressive, limit cycles
Science 23 (4), 899–916. and cyclical data. Journal of the Royal Statistical Society Series

Schiffmann, W., Joost, M., Werner, R., 1993. Application of B 42 (3), 245–292.
genetic algorithms to the construction of topologies for multi- Trippi, R.R., Turban, E., 1993. Neural Networks in Finance and
layer perceptron. In: Proceedings of the International Confer- Investment: Using Artificial Intelligence to Improve Real-
ence on Artificial Neural Networks and Genetic Algorithms, world Performance. Probus, Chicago.
pp. 675–682. Tsay, R.S., 1986. Nonliearity tests for time series. Biometrika 73

Schoneburg, E., 1990. Stock price prediction using neural net- (2), 461–466.
works: A project report. Neurocomputing 2, 17–27. Turkkan, N., Srivastava, N.K., 1995. Prediction of wind load

Sen, T.K., Oliver, R.J., Sen, N., 1992. Predicting corporate distribution for air-supported structures using neural networks.
mergers using backpropagating neural networks: A compara- Canadian Journal of Civil Engineering 22 (3), 453–461.
tive study with logistic models. Working paper, The R.B. Vishwakarma, K.P., 1994. A neural network to predict multiple
Pamplin College of Business, Virginia Tech, Blacksburg, economic time series. In: Proceedings of the IEEE International
VA. Conference on Neural Networks, 6, pp. 3674–3679.



62 G. Zhang et al. / International Journal of Forecasting 14 (1998) 35 –62

Wallich, P., 1991. Wavelet theory: An analysis technique that’s Wu, B., 1995. Model-free forecasting for nonlinear time series
creating ripples. Scientific American, January, 34–35. (with application to exchange rates). Computational Statistics

Wang, Z., Massimo, C.D., Tham, M.T., Morris, A.J., 1994. A and Data Analysis 19, 433–459.
procedure for determining the topology of multilayer feedfor- Yao, S., Wei, C.J., He, Z.Y., 1996. Evolving wavelet neural
ward neural networks. Neural Networks 7 (2), 291–300. networks for function approximation. Electronics Letters 32

Wasserman, P.D., 1989. Neural Computing: Theory and Practice. (4), 360–361.
Van Nostrand, Reinhold, New York. Yoon, Y., Swales, G., 1991. Predicting stock price performance: A

Wedding II, D.K., Cios, K.J., 1996. Time series forecasting by neural network approach. In: Proceedings of the 24th Hawaii
combining RBF networks, certainty factors, and the Box- International Conference on System Sciences., 4, pp. 156–162.
Jenkins model. Neurocomputing 10, 149–168. Yu, X.H., Chen, G.A., Cheng, S.X., 1995. Dynamic learning rate

Weigend, A.S., Gershenfeld, N.A., 1993. Time Series Prediction: optimization of the backpropagation algorithm. IEEE Transac-
Forecasting the Future and Understanding the Past. Addison- tions on Neural Networks 6 (3), 669–677.
Wesley, Reading, MA. Zhang, J., Walter, G.G., Miao, Y., Wayne, W.N., 1995. Wavelet

Weigend, A.S., Huberman, B.A., Rumelhart, D.E., 1990. Predict- neural networks for function learning. IEEE Transactions on
ing the future: A connectionist approach. International Journal Signal Processing 43 (6), 1485–1497.
of Neural Systems 1, 193–209. Zhang, Q., Benveniste, A., 1992. Wavelet networks. IEEE Trans-

Weigend, A.S., Huberman, B.A., Rumelhart, D.E., 1992. Predict- actions on Neural Networks 3 (6), 889–898.
ing sunspots and exchange rates with connectionist networks. Zhang, X., 1994. Time series analysis and prediction by neural
In: Casdagli, M., Eubank, S. (Eds.), Nonlinear Modeling and networks. Optimization Methods and Software 4, 151–170.
Forecasting. Addison-Wesley, Redwood City, CA, pp. 395– Zhang, X., Hutchinson, J., 1993. Simple architectures on fast
432. machines: Practical issues in nonlinear time series prediction.

Weigend, A.S., Rumelhart, D.E., Huberman, B.A., 1991. Generali- In: Weigend, A.S., Gershenfeld, N.A. (Eds.), Time Series
zation by weight-elimination with application to forecasting. Prediction: Forecasting the Future and Understanding the Past.
Advances in Neural Information Processing Systems 3, 875– Addison-Wesley, Reading, MA.
882.

Werbos, P.J., 1974. Beyond regression: new tools for prediction Biographies: Guoqiang ZHANG received a B.S. in Mathematics
and analysis in the behavioral sciences. Ph.D. thesis, Harvard and an M.S. in Statistics from East China Normal University, and
University. is currently a Ph.D. candidate at Kent State University. His

Werbos, P.J., 1988. Generalization of backpropagation with appli- research interests are forecasting, neural networks applications,
cation to a recurrent gas market model. Neural Networks 1, inventory systems, and statistical quality control. In 1997, he
339–356. received the Best Student Paper Award at the Midwest Decision

White, H., 1988. Economic prediction using neural networks: The Sciences Institute Annual Meeting.
case of IBM daily stock returns. In: Proceedings of the IEEE
International Conference on Neural Networks, 2, pp. 451–458. B. Eddy PATUWO is an Associate Professor in the Administrative

White, H., 1989. Learning in artificial neural networks: A statisti- Sciences Department at Kent State University. He earned his
cal perspective. Neural Computation 1, 425–464. Ph.D. in IEOR from Virginia Polytechnic Institute and State

Widrow, B., Rumelhart, D.E., Lehr, M.A., 1994. Neural networks: University. His research interests are in the study of stochastic
Applications in industry, business and science. Communica- inventory systems and neural networks. His research has been
tions of the ACM 37 (3), 93–105. published in Decision Sciences, IIE Transactions, Journal of

Wilson, R., Sharda, R., 1992. Neural networks. OR/MS Today, Operational Research Society, Computers and Operations Re-
August, 36–42. search, among others.

Wilson, R., Sharda, R., 1994. Bankruptcy prediction using neural
networks. Decision Support Systems 11, 545–557.

Michael Y. HU is a Professor of Marketing at Kent StateWong, B.K., Bodnovich, T.A., Selvi, Y., 1995. A bibliography of
University. He earned his Ph.D. in Management Science from theneural networks business application research: 1988–Sep-
University of Minnesota in 1977. He has published extensivelytember 1994. Expert Systems 12 (3), 253–262.
(about 80 research papers) in the areas of neural networks,Wong, F.S., 1991. Time series forecasting using backpropagation
marketing research, international business, and statistical processneural networks. Neurocomputing 2, 147–159.
control. His articles have been published in numerous journalsWong, F.S., Wang, P.Z., Goh, T.H., Quek, B.K., 1992. Fuzzy
including Decision Sciences, Computers and Operations Research,neural systems for stock selection. Financial Analysis Journal,
OMEGA, Journal of Academic of Marketing Science, Journal ofJan. /Feb., 47–52.
International Business Studies, Journal of Business Research,Wong, S.Q., Long, J.A., 1995. A neural network approach to stock
Financial Management, and many others.market holding period returns. American Business Review 13

(2), 61–64.


